Connectedness of the Set of Central Lyapunov Exponents

被引:0
|
作者
Fakhari, Abbas [1 ]
Khalaj, Maryam [1 ]
机构
[1] Shahid Beheshti Univ, Dept Math, Tehran 19839, Iran
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Homoclinic class; Partially hyperbolic; Lyapunov exponent; C1-generic; HYPERBOLICITY; CRITERION;
D O I
10.1007/s10883-024-09718-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that there is a residual subsetRofDiff1(M)such that for anyf is an element of Rand anypartially hyperbolic homoclinic classH(p,f)with one-dimensional central direction, theset of central Lyapunov exponents associated with the ergodic measure with either full supportor positive entropy is an interval.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Emptiness of set of points of lower semicontinuity of Lyapunov exponents
    A. N. Vetokhin
    Differential Equations, 2016, 52 : 272 - 281
  • [2] Emptiness of set of points of lower semicontinuity of Lyapunov exponents
    Vetokhin, A. N.
    DIFFERENTIAL EQUATIONS, 2016, 52 (03) : 272 - 281
  • [3] Lyapunov exponents, dual Lyapunov exponents, and multifractal analysis
    Fan, AH
    Jiang, YP
    CHAOS, 1999, 9 (04) : 849 - 853
  • [4] Lyapunov Exponents
    Weiss, Christian
    TWISTED TEICHMULLER CURVES, 2014, 2104 : 127 - 133
  • [5] STABILITY OF LYAPUNOV EXPONENTS
    LEDRAPPIER, F
    YOUNG, LS
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 : 469 - 484
  • [6] LYAPUNOV EXPONENTS - A SURVEY
    ARNOLD, L
    WIHSTUTZ, V
    LECTURE NOTES IN MATHEMATICS, 1986, 1186 : 1 - 26
  • [7] On quantum Lyapunov exponents
    Majewski, Wladyslaw A.
    Marciniak, Marcin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31): : L523 - L528
  • [8] EXTENDED LYAPUNOV EXPONENTS
    WIESEL, WE
    PHYSICAL REVIEW A, 1992, 46 (12): : 7480 - 7491
  • [9] Differentiability of Lyapunov Exponents
    Ferraiol, Thiago F.
    San Martin, Luiz A. B.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (02) : 289 - 310
  • [10] Parametric Lyapunov exponents
    De Thelin, Henry
    Gauthier, Thomas
    Vigny, Gabriel
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 660 - 672