Direct Observation of Suppressing Ion Migration at Surface and Buried Interface toward Stable Perovskite Solar Cells

被引:0
|
作者
Guo, Zhongli [1 ]
Yan, Jinjian [2 ,3 ]
Zhao, Shanshan [1 ]
Zhang, Jing [1 ]
Lu, Lihua [1 ]
Yun, Yikai [1 ]
Hu, Beier [1 ]
Luo, Hongqiang [1 ]
Chen, Mengyu [1 ,3 ]
Huang, Kai [2 ,3 ,4 ]
Li, Cheng [1 ,3 ]
Zhang, Rong [2 ,3 ,4 ]
机构
[1] Xiamen Univ, Sch Elect Sci & Engn, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, CI Ctr OSED, Dept Phys, Fujian Key Lab Semicond Mat & Applicat,Minist Educ, Xiamen 361005, Fujian, Peoples R China
[3] Future Display Inst Xiamen, Xiamen 361005, Fujian, Peoples R China
[4] Xiamen Univ, Minist Educ, Engn Res Ctr Micronano Optoelect Mat & Devices, Xiamen 361005, Fujian, Peoples R China
来源
关键词
ionic liquid; suppress ion migration; passivatedefect; perovskite solar cells; stability; ROOM-TEMPERATURE; PERFORMANCE; EFFICIENCY; MOLECULES; LAYERS;
D O I
10.1021/acssuschemeng.4c07322
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ion migration can lead to detrimental consequences, including hysteresis effects, interfacial reactions, etc., which degrades the stability and efficiency of perovskite solar cells (PSCs). Ionic liquid has been introduced to enhance the stability of PSCs, yet the detailed mechanism is still under debate. To address the question, in situ wide-field photoluminescence microscopy is employed to characterize the ion migration, which is found more obviously suppressed at the perovskite buried interface than the surface after 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) modification. The experimental results show that BF4 - is distributed mainly at the buried interface, while BMIM exists throughout the perovskite film and accumulates at the surface. BF4 - can suppress ion migration through filling the iodine vacancies and passivating undercoordinated Pb2+, thus reducing the defect density. Meanwhile, BMIM+ can passivate lead vacancies (VPb) and undercoordinated Pb2+ across the whole perovskite film, effectively decreasing the Pb-related defects. Consequently, PSCs incorporated with BMIMBF4 exhibit enhanced power conversion efficiency and stability. This study provides a comprehensive understanding of the role of ionic liquids in the ion migration of perovskite interfaces and its impact on the performance of PSCs.
引用
收藏
页码:17007 / 17017
页数:11
相关论文
共 50 条
  • [1] Suppressing Ion Migration through Dual Interface Engineering toward Efficient and Stable Perovskite Solar Modules
    Wan, Zhi
    Li, Can
    Jia, Chunmei
    Su, Jie
    Li, Zhihao
    Chen, Yankai
    Rao, Feiwen
    Cao, Fangfang
    Xue, Jiayi
    Shi, Jishan
    Meng, Rui
    Zhang, Shangchen
    Du, Liming
    Li, Yichen
    Zhi, Chongyang
    Wang, Xian-Zong
    Xiao, Chuanxiao
    Li, Zhen
    ACS ENERGY LETTERS, 2025,
  • [2] Impact of Buried Interface Texture on Compositional Stratification and Ion Migration in Perovskite Solar Cells
    Singh, Shivam
    Siliavka, Elena
    Loeffler, Markus
    Vaynzof, Yana
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (42)
  • [3] Amphoteric Ion Bridged Buried Interface for Efficient and Stable Inverted Perovskite Solar Cells
    Zhang, Yuling
    Yu, Runnan
    Li, Minghua
    He, Zhangwei
    Dong, Yiman
    Xu, Zhiyang
    Wang, Ruyue
    Ma, Zongwen
    Tan, Zhanao
    ADVANCED MATERIALS, 2024, 36 (01)
  • [4] Suppressing surface and interface recombination to afford efficient and stable inverted perovskite solar cells
    He, Xiaolong
    Arain, Zulqarnain
    Liu, Cheng
    Yang, Yi
    Chen, Jianlin
    Zhang, Xianfu
    Huang, Jingsong
    Ding, Yong
    Liu, Xuepeng
    Dai, Songyuan
    NANOSCALE, 2024, 16 (36) : 17042 - 17048
  • [5] Molecular Bridge on Buried Interface for Efficient and Stable Perovskite Solar Cells
    Guo, Haodan
    Xiang, Wanchun
    Fang, Yanyan
    Li, Jingrui
    Lin, Yuan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (34)
  • [6] Buried interface modification for high performance and stable perovskite solar cells
    Cao, Yang
    Yang, Li
    Yan, Nan
    Meng, Lanxiang
    Chen, Xin
    Zhang, Jiafan
    Qi, Danyang
    Pi, Jiacheng
    Li, Nan
    Feng, Xiaolong
    Ma, Chuang
    Xiao, Fengwei
    Zhao, Guangtao
    Tan, Shuwen
    Liu, Xiaoyan
    Liu, Yucheng
    Zhao, Kui
    Liu, Shengzhong
    Feng, Jiangshan
    ENERGY & ENVIRONMENTAL SCIENCE, 2025,
  • [7] Buried interface engineering with amphoteric ion for inverted perovskite solar cells
    Zhang, Liquan
    Chen, Zhuo
    Han, Jiayu
    Wang, Tingfeng
    Xu, Chongyang
    Wu, Sheng
    Liu, Zhihai
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2025, 131 (04):
  • [8] Improving Thermal Stability of Perovskite Solar Cells by Suppressing Ion Migration
    Shi, Yifeng
    Zheng, Yifan
    Xiao, Xun
    Li, Yan
    Feng, Dianfu
    Zhang, Guodong
    Zhang, Yang
    Li, Tao
    Shao, Yuchuan
    SMALL STRUCTURES, 2024, 5 (10):
  • [9] Ion-Migration Inhibitor for Spiro-OMeTAD/Perovskite Contact toward Stable Perovskite Solar Cells
    Xu, Jiazhe
    Shi, Pengju
    Zhao, Ke
    Yao, Libing
    Deger, Caner
    Wang, Sisi
    Zhang, Xu
    Zhang, Shaochen
    Tian, Yuan
    Wang, Xiaonan
    Shen, Jiahui
    Zhang, Chao
    Yavuz, Ilhan
    Xue, Jingjing
    Wang, Rui
    ACS ENERGY LETTERS, 2024, 9 (03) : 1073 - 1081
  • [10] Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25%
    Su, Hang
    Xu, Zhuo
    He, Xilai
    Yao, Yuying
    Zheng, Xinxin
    She, Yutong
    Zhu, Yujie
    Zhang, Jing
    Liu, Shengzhong
    ADVANCED MATERIALS, 2024, 36 (02)