Logistic-like and Gauss coupled maps: The born of period-adding cascades

被引:0
|
作者
da Costa, Diogo Ricardo [1 ,2 ]
Rocha, Julia G.S. [3 ]
de Paiva, Luam S. [3 ]
Medrano-T, Rene O. [4 ]
机构
[1] Institute of Mathematics and Statistics - University of São Paulo, CEP 05508-090 São Paulo, Brazil
[2] Postgraduate program in Science/Physics, State University of Ponta Grossa (UEPG), 84030-900 Ponta Grossa, PR, Brazil
[3] Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Campus Rio Claro, Av. 24A, 1515, 13506-900 SP, Brazil
[4] Departamento de Física, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, R. São Nicolau, 210, 09913-030 SP, Brazil
来源
关键词
731.1 Control Systems - 921 Mathematics - 922 Statistical Methods - 961 Systems Science;
D O I
110688
中图分类号
学科分类号
摘要
Dynamical systems
引用
收藏
相关论文
共 13 条
  • [1] Logistic-like and Gauss coupled maps: The born of period-adding cascades
    da Costa, Diogo Ricardo
    Rocha, Julia G. S.
    de Paiva, Luam S.
    Medrano-T, Rene O.
    CHAOS SOLITONS & FRACTALS, 2021, 144
  • [2] On logistic-like iterative maps
    Sotiropoulos, Dimitrios A.
    CHAOS THEORY: MODELING, SIMULATION AND APPLICATIONS, 2011, : 77 - 85
  • [3] On period-adding sequences of attracting cycles in piecewise linear maps
    Maistrenko, YL
    Maistrenko, VL
    Vikul, SI
    CHAOS SOLITONS & FRACTALS, 1998, 9 (1-2) : 67 - 75
  • [4] Period-adding bifurcations in a one parameter family of interval maps
    LoFaro, T
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 24 (04) : 27 - 41
  • [5] Analytical investigation of the onset of bifurcation cascade in two logistic-like maps
    Panchev, S
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2001, 6 (01) : 31 - 35
  • [6] Period-adding and the Farey tree structure in a class of one-dimensional discontinuous nonlinear maps
    Du, Zhengdong
    NONLINEAR DYNAMICS, 2016, 84 (04) : 2211 - 2226
  • [7] Period-adding and the Farey tree structure in a class of one-dimensional discontinuous nonlinear maps
    Zhengdong Du
    Nonlinear Dynamics, 2016, 84 : 2211 - 2226
  • [8] C-bifurcations and period-adding in one-dimensional piecewise-smooth maps
    Halse, C
    Homer, M
    di Bernardo, M
    CHAOS SOLITONS & FRACTALS, 2003, 18 (05) : 953 - 976
  • [9] Generalization of the Kolmogorov-Sinai entropy: logistic-like and generalized cosine maps at the chaos threshold
    Tirnakli, U
    Ananos, GFJ
    Tsallis, C
    PHYSICS LETTERS A, 2001, 289 (1-2) : 51 - 58
  • [10] Transition to period-3 synchronized state in coupled gauss maps
    Gaiki, Pratik M.
    Deshmukh, Ankosh D.
    Pakhare, Sumit S.
    Gade, Prashant M.
    CHAOS, 2024, 34 (02)