A posteriori error identities and estimates of modelling errors

被引:0
|
作者
Repin S.I. [1 ]
机构
[1] St. Petersburg Department, V.A. Steklov Institute of Mathematics, St. Petersburg
来源
Adv. Appl. Mech. | 2024年 / 231-279期
关键词
A posteriori error estimates of the functional type; Dimension reduction; Fictitious domain method; Modelling errors; Simplification of models; Variational problems;
D O I
10.1016/bs.aams.2024.03.006
中图分类号
学科分类号
摘要
The paper discusses a posteriori estimation methods for mathematical models based on partial differential equations. The analysis is based on functional identities of a special kind. They reflect the most general relations that hold for deviations from the exact solution of a boundary value problem. The identities do not use special properties of approximations and contain no mesh dependent constants. They are valid for any function in the admissible (energy) class. This universality makes it possible to control the accuracy of various numerical approximations and to compare solutions of mathematical models. These capabilities are demonstrated with the paradigm of modelling errors generated by simplifications of the original problem. The paper discusses three groups of problems, where errors of simplification have different origins. In the first case, the error arises as a result of simplifying coefficients of the equation. Errors of the second type are associated with simplification of geometry. Dimension reduction errors, that is reduction of dimension of the physical domain, form the third group, where the changes affect not only the geometry but also the overall dimensionality of the problem. It is shown that in any of these cases, the desired error estimates follow from the general a posteriori identity after proper specification of the functional spaces and operators associated with the boundary value problem. © 2024
引用
收藏
页码:231 / 279
页数:48
相关论文
共 50 条
  • [1] POSTERIORI ERROR ESTIMATES
    MIEL, G
    MATHEMATICS OF COMPUTATION, 1977, 31 (137) : 204 - 213
  • [2] A POSTERIORI ESTIMATES OF ERROR
    KRASNOSE.MA
    DOKLADY AKADEMII NAUK SSSR, 1968, 181 (05): : 1058 - &
  • [3] POSTERIORI ERROR ESTIMATES IN ITERATIVE PROCEDURES
    OSTROWSKI, AM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) : 290 - 298
  • [4] A posteriori error estimates for Maxwell equations
    Schoeberl, Joachim
    MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 633 - 649
  • [5] A POSTERIORI ERROR ESTIMATES FOR THE RICHARDS EQUATION
    Mitra, K.
    Vohralik, M.
    MATHEMATICS OF COMPUTATION, 2024, 93 (347) : 1053 - 1096
  • [6] A Posteriori error estimates for parameter identification
    Becker, R
    Vexler, B
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 131 - 140
  • [7] A Posteriori Error Estimates for HDG Methods
    Bernardo Cockburn
    Wujun Zhang
    Journal of Scientific Computing, 2012, 51 : 582 - 607
  • [8] A posteriori error estimates for operator equations
    Slawik, L
    Karafiat, A
    NUMERICAL METHODS AND ERROR BOUNDS, 1996, 89 : 241 - 248
  • [9] A Posteriori Error Estimates for Nonstationary Problems
    Dolejsi, Vit
    Roskovec, Filip
    Vlasak, Miloslav
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS (ENUMATH 2015), 2016, 112 : 225 - 233
  • [10] A Posteriori Error Estimates for HDG Methods
    Cockburn, Bernardo
    Zhang, Wujun
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 51 (03) : 582 - 607