Deep learning assisted femtosecond laser-ablation spark-induced breakdown spectroscopy employed for rapid and accurate identification of bismuth brass

被引:0
|
作者
He, Xiaoyong [1 ]
Hu, Jianchang [1 ,2 ]
Peng, Xiao [2 ]
Song, Jun [2 ]
Yuan, Yufeng [1 ]
Qu, Junle [2 ,3 ]
机构
[1] Dongguan Univ Technol, Sch Elect Engn & Intelligentizat, Dongguan 523808, Guangdong, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, State Key Lab Radio Frequency Heterogeneous Integr, Key Lab Optoelect Devices & Syst Minist Educ & Gua, Shenzhen 518060, Guangdong, Peoples R China
[3] Univ Shanghai Sci & Technol, Engn Res Ctr Opt Instrument & Syst, Sch Opt Elect & Comp Engn, Shanghai Key Lab Modern Opt Syst,Minist Educ, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Femtosecond laser-ablation spark-induced; breakdown spectroscopy; Accurate identification of bismuth brass alloy; Extraction of identification contribution; PRINCIPAL COMPONENT ANALYSIS; NEURAL-NETWORKS; QUANTITATIVE-ANALYSIS; LIBS; PULSE; CLASSIFICATION; SOILS;
D O I
10.1016/j.aca.2024.343271
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Background: Owing to its excellent machinability and less toxicity, bismuth brass has been widely used in manufacturing various industrial products. Thus, it is of significance to perform rapid and accurate identification of bismuth brass to reveal the alloying properties. However, the analytical lines of various elements in bismuth brass alloy products based on conventional laser-induced breakdown spectroscopy (LIBS) are usually weak. Moreover, the analytical lines of various elements are often overlaped, seriously interfering with the identification of bismuth brass alloys. To address these challenges, developing an advanced strategy enabling to achieve ultra-high accuracy identification of bismuth brass alloys is highly desirable. Results: This work proposed a novel method for rapidly and accurately identifying bismuth brass samples using deep learning assisted femtosecond laser-ablation spark-induced breakdown spectroscopy (fs-LA-SIBS). With the help of fs-LA-SIBS, a spectral database containing high quality LIBS spectra on element components were constructed. Then, one-dimensional convolutional neural network (CNN) was introduced to distinguish five species of bismuth brass alloy. Amazingly, the optimal CNN model can provide an identification accuracy of 100 % for specie identification. To figure out the spectral features, we proposed a novel approach named "segmented fs-LASIBS wavelength". The identification contribution from various wavelength intervals were extracted by optimal CNN model. It clearly showed that, the differences of spectra feature in the wavelength interval from 336.05 to 364.66 nm can produce the largest identification contribution for an identification accuracy of 100 %. More importantly, the feature differences in the four elements such as Ni, Cu, Sn, and Zn, were verified to mostly contribute to identification accuracy of 100 %. Significance: To the best of our knowledge, it is the first study on one-dimensional CNN configuration assisted with fs-LA-SIBS successfully employed for performing identification of bismuth brass. Compared with conventional machine learning methods, CNN has shown significant more superiority. To reveal the tiny spectra differences, the classification contribution from spectra features were accurately defined by our proposed "segmented fs-LA-SIBS wavelength" method. It can be expected that, CNN assisted with fs-LA-SIBS has great promising for identifying the differences from various element components in metallurgical field.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Rapid and accurate identification of steel alloys by femtosecond laser-ablation spark-induced breakdown spectroscopy and machine learning
    He, Xiaoyong
    Zhou, Bingyan
    Yuan, Yufeng
    Kong, Lingan
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2024, 220
  • [2] Quantitative elemental analysis of bismuth brass by microchip laser-ablation spark-induced breakdown spectroscopy
    Wang, Yarui
    He, Xiaoyong
    Wang, Chaoyong
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2023, 38 (08) : 1643 - 1651
  • [3] Femtosecond laser-ablation spark-induced breakdown spectroscopy and its application to the elemental analysis of aluminum alloys
    He, Xiaoyong
    Chen, Baoqin
    Chen, Yuqi
    Li, Runhua
    Wang, Fujuan
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2018, 33 (12) : 2203 - 2209
  • [5] Analysis of Cu and Zn contents in aluminum alloys by femtosecond laser-ablation spark-induced breakdown spectroscopy
    Pinjun, Li
    Zhengye, Xiong
    Zidong, Ma
    Jingyuan, Guo
    Chunxi, Wang
    OPEN PHYSICS, 2023, 21 (01):
  • [6] Quantitative analysis of trace elements in bismuth brass with high repetition rate laser-ablation spark-induced breakdown spectrum
    Huang Mei-Ting
    Jiang Yin-Hua
    Chen Yu-Qi
    Li Run-Hua
    ACTA PHYSICA SINICA, 2021, 70 (10)
  • [7] Triggered parallel discharge in laser-ablation spark-induced breakdown spectroscopy and studies on its analytical performance for aluminum and brass samples
    Wang, Yarui
    Jiang, Yinhua
    He, Xiaoyong
    Chen, Yuqi
    Li, Runhua
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2018, 150 : 9 - 17
  • [8] Accurate prediction analysis of steel alloy elements by femtosecond laser-ablation spark-induced breakdown spectroscopy and out-of-bag random forest regression
    He, Xiaoyong
    Dong, Bing
    Zhou, Bingyan
    Liu, Jingbo
    Wang, Yarui
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2024, 39 (05) : 1417 - 1427
  • [9] Quantitative analysis of elemental concentrations of aluminum alloys using calibration-free femtosecond laser-ablation spark-induced breakdown spectroscopy
    Yang, Qi
    He, Xiaoyong
    Ling, Dongxiong
    Wei, Zhongchao
    Wei, Dongshan
    Zhang, Qinnan
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2023, 199
  • [10] Development of high repetition rate laser-ablation spark-induced breakdown spectroscopy and evaluation of its analytical performance
    He, Xiaoyong
    Li, Runhua
    Chen, Yuqi
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,