Hydroxyl radical-induced oxidation can modify gelling properties of food proteins. In this study, a hydroxyl radical generating system (HRGS), consisting of 0.1 mM Fe3+, 0.1 mM ascorbic acid, and 1, 10, or 20 mM H2O2, was used to oxidize ginkgo seed protein isolate (GSPI) for 4 h at ambient temperature in the presence of 0.3 % (w/v) hyaluronic acid (HA) to enhance its gelation properties. HRGS treatment led to increased protein hydrophobicity, reduced sulfhydryl content, and disulfide bond-mediated protein crosslinking. Moreover, the secondary structure of GSPI varied with H2O2 concentrations. Moderate oxidation (approximately 10 mM H2O2) promoted GSPI aggregation and improved mechanical strength, rheological properties, water holding capacity, and whiteness of GSPI gels. However, excessive oxidation disrupted hydrogen bonding, generated excessive disulfide bonds, hindered active group interaction, inhibited gel network formation, and reduced gel strength. Hence, hydroxyl radical-induced oxidation holds potential for enhancing GSPI gelation within specific concentration ranges. This study suggests that controlled oxidation could be a novel approach for developing protein- based gel products.