Improved approximations for Euclidean k-means and k-median, via nested quasi-independent sets

被引:0
|
作者
Cohen-Addad, Vincent [1 ]
Esfandiari, Hossein [2 ]
Mirrokni, Vahab [2 ]
Narayanan, Shyam [3 ]
机构
[1] Google Research, Zurich, Switzerland
[2] Google Research, New York City,NY, United States
[3] Massachusetts Institute of Technology, Cambridge,MA, United States
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
K-means clustering
引用
收藏
页码:1621 / 1628
相关论文
共 34 条
  • [1] Improved Approximations for Euclidean k-Means and k-Median, via Nested Quasi-Independent Sets
    Cohen-Addad, Vincent
    Esfandiari, Hossein
    Mirrokni, Vahab
    Narayanan, Shyam
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1621 - 1628
  • [2] Improved Approximations for Euclidean κ-means and κ-median, via Nested Quasi-Independent Sets
    Cohen-Addad, Vincent
    Esfandiari, Hossein
    Mirrokni, Vahab
    Narayanan, Shyam
    arXiv, 2022,
  • [3] ON CORESETS FOR k-MEDIAN AND k-MEANS CLUSTERING IN METRIC AND EUCLIDEAN SPACES AND THEIR APPLICATIONS
    Chen, Ke
    SIAM JOURNAL ON COMPUTING, 2009, 39 (03) : 923 - 947
  • [4] Streaming Euclidean k-median and k-means with o(log n) Space
    Cohen-Addad, Vincent
    Woodruff, David P.
    Zhou, Samson
    2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS, 2023, : 883 - 908
  • [5] BETTER GUARANTEES FOR k-MEANS AND EUCLIDEAN k-MEDIAN BY PRIMAL-DUAL ALGORITHMS
    Ahmadian, Sara
    Norouzi-Fard, Ashkan
    Svensson, Ola
    Ward, Justin
    SIAM JOURNAL ON COMPUTING, 2020, 49 (04) : 97 - 156
  • [6] Better Guarantees for k-Means and Euclidean k-Median by Primal-Dual Algorithms
    Ahmadian, Sara
    Norouzi-Fard, Ashkan
    Svensson, Ola
    Ward, Justin
    2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, : 61 - 72
  • [7] Smaller Coresets for k-Median and k-Means Clustering
    Sariel Har-Peled
    Akash Kushal
    Discrete & Computational Geometry, 2007, 37 : 3 - 19
  • [8] Smaller coresets for k-median and k-means clustering
    Har-Peled, Sariel
    Kushal, Akash
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (01) : 3 - 19
  • [9] Constant Approximation for k-Median and k-Means with Outliers via Iterative Rounding
    Krishnaswamy, Ravishankar
    Li, Shi
    Sandeep, Sai
    STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 646 - 659
  • [10] Stability yields a PTAS for k-Median and k-Means Clustering
    Awasthi, Pranjal
    Blum, Avrim
    Sheffet, Or
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 309 - 318