共 50 条
Automated estimation of offshore polymetallic nodule abundance based on seafloor imagery using deep learning
被引:1
|作者:
Tomczak, Arkadiusz
[1
]
Kogut, Tomasz
[1
]
Kabala, Karol
[1
]
Abramowski, Tomasz
[1
]
Ciążela, Jakub
[2
]
Giza, Andrzej
[3
]
机构:
[1] Maritime University of Szczecin, Waly Chrobrego 1-2, Szczecin,70-500, Poland
[2] Institute of Geological Sciences, Polish Academy of Sciences, ul. Podwale 75, Wroclaw,50-449, Poland
[3] Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, Szczecin,70-383, Poland
关键词:
Acoustic imaging - Underwater mineral resources - Underwater photography;
D O I:
10.1016/j.scitotenv.2024.177225
中图分类号:
学科分类号:
摘要:
The burgeoning demand for critical metals used in high-tech and green technology industries has turned attention toward the vast resources of polymetallic nodules on the ocean floor. Traditional methods for estimating the abundance of these nodules, such as direct sampling or acoustic imagery are time and labour-intensive or often insufficient for large-scale or accurate assessment. This paper advocates for the automatization of polymetallic nodules detection and abundance estimation using deep learning algorithms applied to seabed photographs. We propose UNET convolutional neural network framework specifically trained to process the unique features of seabed imagery, which can reliably detect and estimate the abundance of polymetallic nodules based on thousands of seabed photographs in significantly reduced time (below 10 h for 30 thousand photographs). Our approach addresses the challenges of data preparation, variable image quality, coverage-abundance transition model and sediments presence. We indicated the utilization of this approach can substantially increase the efficiency and accuracy of resource estimation, dramatically reducing the time and cost currently required for manual assessment. Furthermore, we discuss the potential of this method to be integrated into large-scale systems for sustainable exploitation of these undersea resources. © 2024 The Authors
引用
收藏
相关论文