Contrastive signal-dependent plasticity: Self-supervised learning in spiking neural circuits

被引:2
|
作者
Ororbia, Alexander G. [1 ]
机构
[1] Rochester Inst Technol, Dept Comp Sci, 1 Lomb Mem Dr, Rochester, NY 14623 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 43期
关键词
NETWORKS; NEURONS; INTELLIGENCE; STDP;
D O I
10.1126/sciadv.adn6076
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Brain-inspired machine intelligence research seeks to develop computational models that emulate the information processing and adaptability that distinguishes biological systems of neurons. This has led to the development of spiking neural networks, a class of models that promisingly addresses the biological implausibility and the lack of energy efficiency inherent to modern-day deep neural networks. In this work, we address the challenge of designing neurobiologically motivated schemes for adjusting the synapses of spiking networks and propose contrastive signal-dependent plasticity, a process which generalizes ideas behind self-supervised learning to facilitate local adaptation in architectures of event-based neuronal layers that operate in parallel. Our experimental simulations demonstrate a consistent advantage over other biologically plausible approaches when training recurrent spiking networks, crucially side-stepping the need for extra structure such as feedback synapses.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Self-Supervised Contrastive Learning In Spiking Neural Networks
    Bahariasl, Yeganeh
    Kheradpisheh, Saeed Reza
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 181 - 185
  • [2] Radar Signal Modulation Recognition With Self-Supervised Contrastive Learning
    Li, Shiya
    Du, Xiaolin
    Cui, Guolong
    Chen, Xiaolong
    Zheng, Jibin
    Wan, Xunyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [3] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [4] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    TECHNOLOGIES, 2021, 9 (01)
  • [5] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [6] A comprehensive perspective of contrastive self-supervised learning
    Songcan CHEN
    Chuanxing GENG
    Frontiers of Computer Science, 2021, (04) : 102 - 104
  • [7] On Compositions of Transformations in Contrastive Self-Supervised Learning
    Patrick, Mandela
    Asano, Yuki M.
    Kuznetsova, Polina
    Fong, Ruth
    Henriques, Joao F.
    Zweig, Geoffrey
    Vedaldi, Andrea
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9557 - 9567
  • [8] Contrastive Self-supervised Learning for Graph Classification
    Zeng, Jiaqi
    Xie, Pengtao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10824 - 10832
  • [9] Group Contrastive Self-Supervised Learning on Graphs
    Xu, Xinyi
    Deng, Cheng
    Xie, Yaochen
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3169 - 3180
  • [10] Self-supervised contrastive learning on agricultural images
    Guldenring, Ronja
    Nalpantidis, Lazaros
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 191