In situ Reconstructured Alloy Nanosheets Heterojunction for Highly Selective Electrochemical CO2 Reduction to Formate

被引:0
|
作者
Fu, Yao [1 ]
Zeng, Binghuan [1 ]
Wang, Xin [1 ]
Lai, Longsheng [1 ]
Wu, Qifan [2 ]
Leng, Kangmin [1 ]
机构
[1] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[2] East China Jiaotong Univ, Coll Sci, Nanchang 330013, Peoples R China
关键词
Cu6Sn5 alloy nanosheet; CO2; reduction; Electrocatalyst; In situ Raman; Dual metal; ELECTROCATALYTIC CONVERSION; ELECTROREDUCTION;
D O I
10.1002/chem.202402301
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tin (Sn)-based materials are expected to realize efficient CO2 electroreduction into formate. Herein, we constructed a heterojunction by depositing Cu on Cu-doped SnS2 nanosheets. During the electrochemical reaction, this heterojunction evolves to a highly active phase of Cu2O@Cu6Sn5 while maintaining its two-dimensional morphology. Specifically, a partial current density of 35 mA cm(-2) with an impressive faradaic efficiency of 93 % for formate production was achieved over the evolved heterojunction. In situ and ex situ experiments elucidated the formation mechanism of the Cu2O@Cu6Sn5 heterojunction. Cu6Sn5 nanosheets were formed via a stepwise desulfurization process, while Cu2O was generated through its reaction with hydroxyl radicals. This evolved heterojunction with a high electrochemically active surface area synergistically stabilized the *OCHO intermediate, thereby significantly enhancing the selectivity and activity. Our findings provide insight into the structural evolution process and guide the development of selective electrocatalysts for CO2 reduction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] In Situ Structure Refactoring of Bismuth Nanoflowers for Highly Selective Electrochemical Reduction of CO2 to Formate
    Yang, Songyuan
    Jiang, Minghang
    Zhang, Wenjun
    Hu, Yi
    Liang, Junchuan
    Wang, Yaoda
    Tie, Zuoxiu
    Jin, Zhong
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (37)
  • [2] Bismuth Nanosheets Derived by In Situ Morphology Transformation of Bismuth Oxides for Selective Electrochemical CO2 Reduction to Formate
    Lee, Jungkuk
    Liu, Hengzhou
    Chen, Yifu
    Li, Wenzhen
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (12) : 14210 - 14217
  • [3] Balanced Adsorption Toward Highly Selective Electrochemical Reduction of CO2 to Formate
    Su, Die
    Zhang, Jingru
    Liu, Jin
    Lv, Shengyao
    Xie, Zhuoyang
    Tu, Yunchuan
    Hu, Xiaohua
    Li, Cunpu
    Liu, Bin
    Wei, Zidong
    SMALL, 2025, 21 (01)
  • [4] In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO2 Reduction to Formate
    Peng, Chan-Juan
    Wu, Xin-Tao
    Zeng, Guang
    Zhu, Qi-Long
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (12) : 1539 - 1544
  • [5] Highly efficient In-Sn alloy catalysts for electrochemical reduction of CO2 to formate
    Lai, Qiang
    Yang, Na
    Yuan, Gaoqing
    ELECTROCHEMISTRY COMMUNICATIONS, 2017, 83 : 24 - 27
  • [6] Facile Synthesis of Porous Zinc Nanosheets for Highly Selective Electrochemical CO2 Reduction to CO
    Mahyoub, Samah A.
    Drmosh, Husam Q.
    Qaraah, Fahim A.
    Suliman, Munzir
    Al-Fadhil, Danah A.
    Drmosh, Qasem A.
    CHEMISTRYSELECT, 2024, 9 (36):
  • [7] Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate
    Na Han
    Yu Wang
    Hui Yang
    Jun Deng
    Jinghua Wu
    Yafei Li
    Yanguang Li
    Nature Communications, 9
  • [8] Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate
    Han, Na
    Wang, Yu
    Yang, Hui
    Deng, Jun
    Wu, Jinghua
    Li, Yafei
    Li, Yanguang
    NATURE COMMUNICATIONS, 2018, 9
  • [9] Highly selective electrochemical CO2 reduction to formate using Sn@Cu electrocatalyst
    Aarthi Pandiarajan
    Ramachandran Sekar
    Kumaravelu Pavithra
    Murugesan Gomathi
    Sakkarapalayam Murugesan Senthil Kumar
    Manickam Anbu Kulandainathan
    Subbiah Ravichandran
    Journal of Applied Electrochemistry, 2023, 53 : 1033 - 1042
  • [10] Highly selective electrochemical CO2 reduction to formate using Sn@Cu electrocatalyst
    Pandiarajan, Aarthi
    Sekar, Ramachandran
    Pavithra, Kumaravelu
    Gomathi, Murugesan
    Kumar, Sakkarapalayam Murugesan Senthil
    Kulandainathan, Manickam Anbu
    Ravichandran, Subbiah
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (05) : 1033 - 1042