KISSING POLYTOPES

被引:0
|
作者
Deza, Antoine [1 ]
Onn, Shmuel [2 ]
Pokutta, Sebastian [3 ]
Pournin, Lionel [4 ]
机构
[1] McMaster Univ, Hamilton, ON L8S 4L8, Canada
[2] Technion Israel Inst Technol, IL-32000 Haifa, Israel
[3] Zuse Inst Berlin, Berlin, Germany
[4] Univ Paris 13, Villetaneuse, France
基金
美国国家科学基金会; 以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
facial distance; vertex-facet distance; pyramidal width; alternating projections; distances in geometric lattices; lattice polytopes;
D O I
10.1137/24M1640859
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the following question: How close can two disjoint lattice polytopes contained in a fixed hypercube be? This question stems from various contexts where the minimal distance between such polytopes appears in complexity bounds of optimization algorithms. We provide nearly matching bounds on this distance and discuss its exact computation. We also give similar bounds for disjoint rational polytopes whose binary encoding length is prescribed.
引用
收藏
页码:2643 / 2664
页数:22
相关论文
共 50 条
  • [1] KISSING OFF KISSING UP
    ERICKSON, TJ
    LITTLE, AD
    FORTUNE, 1995, 131 (06) : 12 - 12
  • [2] Kissing melanoma or kissing nevus of the penis?
    Egberts, Friederike
    Egberts, Jan-Hendrik
    Schwarz, Thomas
    Hauschild, Axel
    UROLOGY, 2007, 69 (02) : 384.e5 - 384.e7
  • [3] Not kissing
    Juneja, M.
    BRITISH DENTAL JOURNAL, 2008, 204 (11) : 597 - 597
  • [4] THE 'KISSING'
    ROSENBLATT, J
    EXILE, 1988, 12 (03): : 47 - 47
  • [5] Not kissing
    M. Juneja
    British Dental Journal, 2008, 204 : 597 - 597
  • [6] KISSING
    Sollers, Philippe
    INFINI, 2011, (113): : 38 - 41
  • [7] 'KISSING'
    ADCOCK, F
    POETRY AUSTRALIA, 1985, (102): : 13 - 13
  • [8] Kissing
    Klima, John
    SANDBOX SYMPOSIUM 2007: ACM SIGGRAPH VIDEO GAME SYMPOSIUM, PROCEEDINGS, 2007, : 109 - 132
  • [9] 'Kissing'
    McFee, M
    TRIQUARTERLY, 2000, (107-08): : 415 - 416
  • [10] No Kissing There
    Stern, Gerald
    AMERICAN POETRY REVIEW, 2018, 47 (02): : 28 - 28