Explainable artificial intelligence for machine learning prediction of bandgap energies

被引:0
|
作者
Masuda, Taichi [1 ]
Tanabe, Katsuaki [1 ]
机构
[1] Kyoto Univ, Dept Chem Engn, Kyoto 6158510, Japan
基金
日本学术振兴会;
关键词
FEATURE-SELECTION; TRADE-OFF; GAP; PEROVSKITES; PERFORMANCE; GW;
D O I
10.1063/5.0226151
中图分类号
O59 [应用物理学];
学科分类号
摘要
The bandgap is an inherent property of semiconductors and insulators, significantly influencing their electrical and optical characteristics. However, theoretical calculations using the density functional theory (DFT) are time-consuming and underestimate bandgaps. Machine learning offers a promising approach for predicting bandgaps with high precision and high throughput, but its models face the difficulty of being hard to interpret. Hence, an application of explainable artificial intelligence techniques to the bandgap prediction models is necessary to enhance the model's explainability. In our study, we analyzed the support vector regression, gradient boosting regression, and random forest regression models for reproducing the experimental and DFT bandgaps using the permutation feature importance (PFI), the partial dependence plot (PDP), the individual conditional expectation plot, and the accumulated local effects plot. Through PFI, we identified that the average number of electrons forming covalent bonds and the average mass density of the elements within compounds are particularly important features for bandgap prediction models. Furthermore, PDP visualized the dependency relationship between the characteristics of the constituent elements of compounds and the bandgap. Particularly, we revealed that there is a dependency where the bandgap decreases as the average mass density of the elements of compounds increases. This result was then theoretically interpreted based on the atomic structure. These findings provide crucial guidance for selecting promising descriptors in developing high-precision and explainable bandgap prediction models. Furthermore, this research demonstrates the utility of explainable artificial intelligence methods in the efficient exploration of potential inorganic semiconductor materials.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Advances in Machine Learning and Explainable Artificial Intelligence for Depression Prediction
    Byeon, Haewon
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 520 - 526
  • [2] Explainable Artificial Intelligence and Machine Learning
    Raunak, M. S.
    Kuhn, Rick
    COMPUTER, 2021, 54 (10) : 25 - 27
  • [3] Explainable artificial intelligence for stroke prediction through comparison of deep learning and machine learning models
    Moulaei, Khadijeh
    Afshari, Lida
    Moulaei, Reza
    Sabet, Babak
    Mousavi, Seyed Mohammad
    Afrash, Mohammad Reza
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] Explainable Artificial Intelligence (XAI) and Machine Learning Technique for Prediction of Properties in Additive Manufacturing
    Abbili, Kiran Kumar
    JOURNAL OF ADVANCED MANUFACTURING SYSTEMS, 2025, 24 (02) : 229 - 240
  • [5] Interpretable Prediction of a Decentralized Smart Grid Based on Machine Learning and Explainable Artificial Intelligence
    Cifci, Ahmet
    IEEE ACCESS, 2025, 13 : 36285 - 36305
  • [6] Exploring the Efficacy of Artificial Intelligence in Speed Prediction: Explainable Machine-Learning Approach
    Jain, Vineet
    Chouhan, Rajesh
    Dhamaniya, Ashish
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2025, 39 (02)
  • [7] Risk Prediction of Diabetic Foot Amputation Using Machine Learning and Explainable Artificial Intelligence
    Oei, Chien Wei
    Chan, Yam Meng
    Zhang, Xiaojin
    Leo, Kee Hao
    Yong, Enming
    Chong, Rhan Chaen
    Hong, Qiantai
    Zhang, Li
    Pan, Ying
    Tan, Glenn Wei Leong
    Mak, Malcolm Han Wen
    JOURNAL OF DIABETES SCIENCE AND TECHNOLOGY, 2024,
  • [8] Explainable artificial intelligence and machine learning: A reality rooted perspective
    Emmert-Streib, Frank
    Yli-Harja, Olli
    Dehmer, Matthias
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (06)
  • [9] Prediction of disease comorbidity using explainable artificial intelligence and machine learning techniques: A systematic review
    Alsaleh, Mohanad M.
    Allery, Freya
    Choi, Jung Won
    Hama, Tuankasfee
    McQuillin, Andrew
    Wu, Honghan
    Thygesen, Johan H.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 175
  • [10] A decision support system for osteoporosis risk prediction using machine learning and explainable artificial intelligence
    Khanna, Varada Vivek
    Chadaga, Krishnaraj
    Sampathila, Niranjana
    Chadaga, Rajagopala
    Prabhu, Srikanth
    Swathi, K. S.
    Jagdale, Aditya S.
    Bhat, Devadas
    HELIYON, 2023, 9 (12)