Integrating hydrological parameters in wildfire risk assessment: a machine learning approach for mapping wildfire probability

被引:0
|
作者
Khodaee, Mahsa [1 ]
Easterday, Kelly [1 ]
Klausmeyer, Kirk [1 ]
机构
[1] The Nature Conservancy, California Program, Sacramento,CA,9581, United States
关键词
D O I
10.1088/1748-9326/ad80ad
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Machine learning methods for wildfire risk assessment
    Carlos Brys
    David Luis La Red Martínez
    Marcelo Marinelli
    Earth Science Informatics, 2025, 18 (1)
  • [2] Mapping wildfire ignition probability and predictor sensitivity with ensemble-based machine learning
    Qi Tong
    Thomas Gernay
    Natural Hazards, 2023, 119 (3) : 1551 - 1582
  • [3] Mapping wildfire ignition probability and predictor sensitivity with ensemble-based machine learning
    Tong, Qi
    Gernay, Thomas
    NATURAL HAZARDS, 2023, 119 (03) : 1551 - 1582
  • [4] Wildfire risk assessment and mapping - an approach for Natura 2000 forest sites
    Borisova, Bilyana
    Todorova, Elena
    Ihtimanski, Ivo
    Glushkova, Maria
    Zhiyanski, Miglena
    Georgieva, Margarita
    Stoyanov, Todor
    Bozhilova, Mariam
    Atanasova, Margarita
    Dimitrov, Stelian
    TREES FORESTS AND PEOPLE, 2024, 16
  • [5] Integrating cultural ecosystem services in wildfire risk assessment
    Vigna, Ingrid
    Battisti, Luca
    Ascoli, Davide
    Besana, Angelo
    Pezzoli, Alessandro
    Comino, Elena
    LANDSCAPE AND URBAN PLANNING, 2024, 243
  • [6] Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping
    Gholamnia, Khalil
    Nachappa, Thimmaiah Gudiyangada
    Ghorbanzadeh, Omid
    Blaschke, Thomas
    SYMMETRY-BASEL, 2020, 12 (04):
  • [7] Global Wildfire Susceptibility Mapping Based on Machine Learning Models
    Shmuel, Assaf
    Heifetz, Eyal
    FORESTS, 2022, 13 (07):
  • [8] Wildfire Risk Assessment in Liangshan Prefecture, China Based on An Integration Machine Learning Algorithm
    Xie, Lingxiao
    Zhang, Rui
    Zhan, Junyu
    Li, Song
    Shama, Age
    Zhan, Runqing
    Wang, Ting
    Lv, Jichao
    Bao, Xin
    Wu, Renzhe
    REMOTE SENSING, 2022, 14 (18)
  • [9] Wildfire susceptibility mapping in Liguria (Italy). Comparison of Statistical Driven Partitioning and Machine Learning approach
    Biondi, Guido
    Campo, Lorenzo
    D'Andrea, Mirko
    Degli Esposti, Silvia
    Fiorucci, Paolo
    Tonini, Marj
    ADVANCES IN FOREST FIRE RESEARCH 2018, 2018, : 201 - 207
  • [10] A Machine Learning Approach to Waterbody Segmentation in Thermal Infrared Imagery in Support of Tactical Wildfire Mapping
    Oliver, Jacqueline A.
    Pivot, Frederique C.
    Tan, Qing
    Cantin, Alan S.
    Wooster, Martin J.
    Johnston, Joshua M.
    REMOTE SENSING, 2022, 14 (09)