Research on Eco-driving Control Strategy of Connected Electric Vehicle Based on Learning-MPC

被引:0
|
作者
Li, Bingbing [1 ]
Zhuang, Weichao [1 ]
Liu, Haoji [1 ]
Zhang, Hao [2 ]
Yin, Guodong [1 ]
Zhang, Jianrun [1 ]
机构
[1] School of Mechanical Engineering, Southeast University, Nanjing,211189, China
[2] State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing,100084, China
关键词
Vehicles;
D O I
10.3901/JME.2024.10.453
中图分类号
学科分类号
摘要
Eco-driving is an important way to achieve sustainable mobility and sustainable urban transport development. To improve the energy efficiency of connected electric vehicles, a two-stage non-conservative eco-driving control strategy combining learning-based model predictive control and fast interior point method is proposed for complex and variable urban signalized intersection scenarios, taking into full consideration constraints such as signal phase and timing information of real traffic and the limited predictive capability of vehicles for future information. Before vehicle departure, the energy-efficient optimal control problem is constructed based on passenger destination and road speed limit information, while the band-stop function is introduced to improve the computational efficiency to transform the speed constraint into a part of the objective function, and the interior point method coarse planning solves the vehicle energy-efficient optimal reference speed trajectory; At departure, the vehicle predicts the dynamic signal phase and timing information, and the Learning-MPC strategy learns the state prediction model of the vehicle online through Gaussian process to realize the tracking control of the vehicle energy-efficient optimal reference speed trajectory. The simulation shows that the proposed method can achieve 9.7% energy saving compared with the classical acceleration-uniformity-deceleration strategy, and indicates better energy saving potential as the length of the predicted field of view increases. It is further verified that the error accumulation problem caused by the discretization of the traditional MPC non-flexible conservative system state prediction model is solved by machine learning, and the optimal effect of vehicle eco-driving control is improved to a higher degree. © 2024 Chinese Mechanical Engineering Society. All rights reserved.
引用
收藏
页码:453 / 462
相关论文
共 50 条
  • [1] Learning based eco-driving strategy of connected electric vehicle at signalized intersection
    Zhuang W.-C.
    Ding H.-N.
    Dong H.-X.
    Yin G.-D.
    Wang X.
    Zhou C.-B.
    Xu L.-W.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (01): : 82 - 93
  • [2] Eco-driving control strategy of connected electric vehicle at signalized intersection
    Chen H.
    Zhuang W.
    Yin G.
    Dong H.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2021, 51 (01): : 178 - 186
  • [3] An eco-driving strategy for electric vehicle based on the powertrain
    Liao, Peng
    Tang, Tie-Qiao
    Liu, Ronghui
    Huang, Hai-Jun
    APPLIED ENERGY, 2021, 302
  • [4] Optimal-Control-Based Eco-Driving Solution for Connected Battery Electric Vehicle on a Signalized Route
    Naeem, Hafiz Muhammad Yasir
    Butt, Yasir Awais
    Ahmed, Qadeer
    Bhatti, Aamer Iqbal
    AUTOMOTIVE INNOVATION, 2023, 6 (04) : 586 - 596
  • [5] Optimal-Control-Based Eco-Driving Solution for Connected Battery Electric Vehicle on a Signalized Route
    Hafiz Muhammad Yasir Naeem
    Yasir Awais Butt
    Qadeer Ahmed
    Aamer Iqbal Bhatti
    Automotive Innovation, 2023, 6 : 586 - 596
  • [6] "InfoRich" Eco-Driving Control Strategy for Connected and Automated Vehicles
    Zhao, Junfeng
    Hu, Yiran
    Muldoon, Steve
    Chang, Chen-Fang
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 4621 - 4627
  • [7] An enhanced eco-driving strategy based on reinforcement learning for connected electric vehicles: cooperative velocity and lane-changing control
    Ding H.
    Li W.
    Xu N.
    Zhang J.
    Journal of Intelligent and Connected Vehicles, 2022, 5 (03): : 316 - 332
  • [8] Eco-driving strategy for connected electric buses at the signalized intersection with a station
    Zhang, Yali
    Fu, Rui
    Guo, Yingshi
    Yuan, Wei
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2024, 128
  • [9] Hierarchical eco-driving control strategy for hybrid electric vehicle platoon at signalized intersections under partially connected and automated vehicle environment
    Chen, Jian
    Qian, Li-Jun
    Xuan, Liang
    Chen, Chen
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (07) : 1312 - 1330
  • [10] Research on eco-driving strategy at intersection based on vehicle infrastructure cooperative system
    Yang, Zhifa
    Zeng, Huanjing
    Yu, Zhuo
    Wei, Xuexin
    Liu, Aimin
    Fan, Xianjun
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (04)