Atmospheric-pressure plasmas for NOx production: Short review on current status

被引:1
|
作者
Abdelaziz, Ayman A. [1 ,2 ]
Komuro, Atsushi [1 ]
Teramoto, Yoshiyuki [1 ]
Schiorlin, Milko [3 ]
Kim, Dae-Yeong [4 ]
Nozaki, Tomohiro [4 ]
Kim, Hyun-Ha [1 ,5 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Environm Management Res Inst, 16-1 Onoga Wa, Tsukuba 3058569, Japan
[2] Assiut Univ, Phys Dept, Assiut 71516, Egypt
[3] Leibniz Inst Plasma & Technol, Greifswald, Germany
[4] Tokyo Inst Technol, Dept Mech Engn, O Okayama, Tokyo 1528550, Japan
[5] Natl Inst Adv Ind Sci & Technol, Global Zero Emiss Res Ctr, 16-1 Onogawa, Tsukuba 3058569, Japan
关键词
Duck curve; Power-to-X (PtX); Nitrogen fixation; Spark; NOx production;
D O I
10.1016/j.cogsc.2024.100977
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electricity-based chemical conversion is now recognized as a crucial technology for strengthening renewable energy in the pursuit of carbon neutrality. Atmospheric pressure plasmas have potential for nitrogen fixation when coupled with renewable energy, due to their ease of startup and shutdown, as well as their ability to adapt quickly to changing operating parameters. This short review highlights the plasma-based NOx formation, with a particular focus on advancements in NOx yield and energy cost over the past five years. Warm plasmas have demonstrated greater effectiveness than nonthermal plasmas in NOx production. Recent improvements in NOx yield and energy efficiency are discussed, along with a future outlook on their potential in power-to-X applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Atmospheric-Pressure Plasmas: Science and Applications
    Becker, Kurt H.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2009, 37 (06) : 711 - 711
  • [2] Perspectives on atmospheric-pressure plasmas for nanofabrication
    Mariotti, Davide
    Sankaran, R. Mohan
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (17)
  • [3] Protein patterning by atmospheric-pressure plasmas
    Ando, A.
    Sayed, M. A.
    Asano, T.
    Tero, R.
    Kitano, K.
    Urisu, T.
    Hamaguchi, S.
    FOURTH INTERNATIONAL SYMPOSIUM ON ATOMIC TECHNOLOGY, 2010, 232
  • [4] INTERACTION OF MICROWAVES WITH ATMOSPHERIC-PRESSURE PLASMAS
    LAROUSSI, M
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1995, 16 (12): : 2069 - 2083
  • [5] MICROWAVE CAVITY FOR ATMOSPHERIC-PRESSURE PLASMAS
    MOREAU, G
    DESSAUX, O
    GOUDMAND, P
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1983, 16 (12): : 1160 - 1161
  • [6] RELAXATION OF ATMOSPHERIC-PRESSURE HELIUM PLASMAS
    COLTON, DP
    SIERRA, RA
    CUNNINGHAM, AJ
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1979, 12 (06) : 1043 - 1051
  • [7] Atmospheric-Pressure Plasmas for Solar Cell Manufacturing
    Dani, I.
    Maeder, G.
    Grabau, P.
    Dresler, B.
    Linaschke, D.
    Lopez, E.
    Kaskel, S.
    Beyer, E.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2009, 49 (09) : 662 - 670
  • [9] Continuous batch synthesis with atmospheric-pressure microwave plasmas
    Jie, Ziyao
    Wang, Tian-Yu
    Huang, Shiyang
    Bai, Xinpeng
    Ma, Wenhui
    Zhang, Guixin
    Luo, Nan
    ISCIENCE, 2024, 27 (08)
  • [10] Antiviral and antibacterial effects of cold atmospheric-pressure plasmas
    Reuter, Stephan
    Galvanotechnik, 2020, 111 (04): : 638 - 642