Physical-Mathematical Model of Methane Flow in Nonstationary Stress Field in Coal Seam

被引:1
|
作者
Kurlenya, M. V. [1 ]
Lee, K. H. [2 ]
Kazantsev, V. G. [3 ]
Lee, Eun Hee [2 ]
机构
[1] Russian Acad Sci, Chinakal Inst Min, Siberian Branch, Novosibirsk 630091, Russia
[2] VostNII Sci Ctr, Kemerovo 650002, Russia
[3] Ind Safety LLC, Biisk 659302, Russia
关键词
modeling; coal seam; gas drainage; flow; sorption pressure; stress state; occlusion stress; piezoconductivity;
D O I
10.1134/S1062739124030013
中图分类号
TD [矿业工程];
学科分类号
0819 ;
摘要
A physical-mathematical model of natural gas flow in methane-containing coal seams based on the concept of interaction of geomechanical and gas-dynamic factors in coal degassing process. Methane flow calculation is performed, and it is found that the cause of the decrease in the methane yield is the increase in stresses around producing wells, the change in the occlusion pressure of gas in cracks and pores, as well as the piezoconductivity of rock mass.
引用
收藏
页码:357 / 365
页数:9
相关论文
共 50 条
  • [1] ROLE OF METHANE IN THE STRESS STATE OF A COAL SEAM
    KHODOT, VV
    SOVIET MINING SCIENCE USSR, 1980, 16 (05): : 460 - 466
  • [2] A physical-mathematical model for the dispersion process in continuous mixers
    Potente, H
    Kretschmer, K
    Flecke, J
    POLYMER ENGINEERING AND SCIENCE, 2002, 42 (01): : 19 - 32
  • [3] Stress-damage-flow coupling model and its application to pressure relief coal bed methane in deep coal seam
    Yang, T. H.
    Xu, T.
    Liu, H. Y.
    Tang, C. A.
    Shi, B. M.
    Yu, Q. X.
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2011, 86 (04) : 357 - 366
  • [4] PHYSICAL-MATHEMATICAL MODEL OF FLUIDIZED-BED DYNAMICS
    PIETRZYK, Z
    KULESZA, L
    SZILDER, K
    CHEMISCHE TECHNIK, 1983, 35 (05): : 266 - 266
  • [5] A physical-mathematical model of the power circuit of a plasma torch
    Vereshchago, Ye.N.
    Kostyuchenko, V.I.
    Welding International, 2014, 28 (02) : 133 - 139
  • [6] GENERAL PHYSICAL-MATHEMATICAL MODEL OF IGNITION AND BURNING OF WOOD
    Grishin, A. M.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2010, (10): : 60 - 70
  • [7] Physical-mathematical model of hydrological conditions on irrigated land
    Makhov, A.Zh.
    Water Resources, 1991, 18 (01) : 6 - 12
  • [8] Physical-mathematical model of optical radiation interaction with biological tissues
    Kozlovska, Tetyana I.
    Kolisnik, Peter F.
    Zlepko, Sergey M.
    Titova, Natalia V.
    Pavlov, Volodymyr S.
    Wojcik, Waldemar
    Omiotek, Zbigniew
    Kozhambardiyeva, Miergul
    Zhanpeisova, Aizhan
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH ENERGY PHYSICS EXPERIMENTS 2017, 2017, 10445
  • [9] PHYSICAL-MATHEMATICAL MODEL OF COLLECTIVE DEVELOPMENT OF DICTYOSTELIUM-DISCOIDEUM
    BELINTSEV, BN
    CHERNAVSKII, DS
    VOLKENSHTEIN, MV
    MOLECULAR BIOLOGY, 1992, 26 (02) : 246 - 256
  • [10] Preferred physical-mathematical model of the cold energy storage system
    Menin, Boris M.
    APPLIED THERMAL ENGINEERING, 2017, 112 : 1020 - 1026