共 32 条
- [1] Hoffmann J, Borgeaud S, Mensch A, Et al., An empirical analysis of compute-optimal large language model training, Advances in Neural Information Processing Systems, 35, pp. 30016-30030, (2022)
- [2] Chan S, Santoro A, Lampinen A, Et al., Data distributional properties drive emergent in-context learning in transformers[J], Advances in Neural Information Processing Systems, 35, pp. 18878-18891, (2022)
- [3] Liu Ze, Lin Yutong, Cao Yue, Et al., Swin transformer: Hierarchical vision transformer using shifted windows, Proc of the IEEE/CVF Int Conf on Computer Vision, pp. 10012-10022, (2021)
- [4] Liu Ze, Hu Han, Lin Yutong, Et al., Swin transformer v2: Scaling up capacity and resolution, Proc of the IEEE/CVF Conf on Computer Vision and Pattern Recognition, pp. 12009-12019, (2022)
- [5] Jawalkar N, Gupta K, Basu A, Et al., Orca: FSS-based secure training with GPUs[J], Cryptology ePrint Archive, (2023)
- [6] Hao Meng, Li Hongwei, Chen Hanxiao, Et al., Iron: Private inference on transformers, Advances in Neural Information Processing Systems, 35, pp. 15718-15731, (2022)
- [7] Chen Tianyu, Bao Hangbo, Huang Shaohan, Et al., THE-X: Privacy-preserving transformer inference with homomorphic encryption, Findings of the Association for Computational Linguistics: ACL 2022, pp. 3510-3520, (2022)
- [8] Mengxin Zheng, Qian Lou, Jiang Lei, Primer: Fast private transformer inference on encrypted data, (2023)
- [9] Gupta K, Jawalkar N, Mukherjee A, Et al., Sigma: Secure gpt inference with function secret sharing[J], Cryptology ePrint Archive, (2023)
- [10] Juvekar C, Vaikuntanathan V, Chandrakasan A., GAZELLE: A low latency framework for secure neural network inference[C], Proc of the 27th USENIX Conf on Security Symp, pp. 1651-1669, (2018)