A new proposal for energy efficiency in industrial manufacturing systems based on machine learning techniques

被引:0
|
作者
Lima, Rômulo César Cunha [1 ]
de Oliveira, Leonardo Adriano Vasconcelos [1 ]
da Silva, Suane Pires Pinheiro [4 ]
de Alencar Santos, José Daniel [3 ]
Caetano, Rebeca Gomes Dantas [3 ]
Freitas, Francisco Nélio Costa [2 ]
de Oliveira, Venício Soares [3 ]
de Freitas Bonifácio, Andreyson [3 ]
Filho, Pedro Pedrosa Rebouças [2 ]
机构
[1] Department of Computer Science, Federal Institute of Education, Science and Technology of Ceará (IFCE), Ceará, Fortaleza,60040-215, Brazil
[2] Department of Industry, Federal Institute of Education, Science and Technology of Ceará (IFCE), Ceará, Fortaleza,60040-215, Brazil
[3] Department of Industry, Federal Institute of Education, Science and Technology of Ceará (IFCE), Ceará, Maracanaú,61939-140, Brazil
[4] Department of Teleinformatics Engineering, Federal University of Ceará (UFC), Ceará, Fortaleza,60440-900, Brazil
关键词
Smart manufacturing;
D O I
10.1016/j.jmsy.2024.10.025
中图分类号
学科分类号
摘要
This research presents a novel methodology for enhancing energy efficiency in industrial manufacturing systems through machine learning techniques. Specifically, the study focuses on the automatic classification of five steel types — ABNT SAE 1020, 1045, 4140, 4340, and VC — based on electrical and mechanical characteristics observed during turning operations. The methodology includes the prediction of energy consumption for these steel types, applying regression models, under various machining conditions, including different rotation speeds and feed rates. To the best of the authors’ knowledge, this study is the first to address this issue using this specific approach. The proposed method was validated through computational experiments using multiple machine learning algorithms, with the Multilayer Perceptron (MLP) neural network achieving the highest classification accuracy of 95.52%. In terms of energy consumption prediction, MLP models demonstrated superior performance in 13 out of 15 turning scenarios. The regression analysis further confirmed the effectiveness of these models, achieving low Root Mean Squared Error (RMSE) values across different configurations. The results indicate that integrating machine learning into machining processes can significantly improve energy efficiency, leading to more sustainable industrial practices. © 2024 The Society of Manufacturing Engineers
引用
收藏
页码:1062 / 1076
相关论文
共 50 条
  • [1] Evaluation Method of Industrial Efficiency of Green Manufacturing Enterprises Based on Machine Learning
    Hao, Xiaoyan
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [2] Machine Learning-Based Optimization Techniques for Renewable Energy Systems
    Rupa, Gummadi Sri
    Nuvvula, Ramakrishna S. S.
    Kumar, Polamarasetty P.
    Ali, Ahmed
    Khan, Baseem
    12TH INTERNATIONAL CONFERENCE ON SMART GRID, ICSMARTGRID 2024, 2024, : 389 - 394
  • [3] Drivers of energy efficiency for manufacturing SMEs in Eurasian countries: a profiling analysis using machine learning techniques
    Ozbugday, Fatih Cemil
    Ozgur, Onder
    Findik, Derya
    ENERGY EFFICIENCY, 2022, 15 (07)
  • [4] Drivers of energy efficiency for manufacturing SMEs in Eurasian countries: a profiling analysis using machine learning techniques
    Fatih Cemil Ozbugday
    Onder Ozgur
    Derya Findik
    Energy Efficiency, 2022, 15
  • [5] Architecture Proposal for Machine Learning Based Industrial Process Monitoring
    Rychener, Lorenz
    Montet, Frederic
    Hennebert, Jean
    11TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 3RD INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2020, 170 : 648 - 655
  • [6] ENERGY EFFICIENCY OF AUTOMATED MANUFACTURING SYSTEMS : INNOVATIONS, CHALLENGES AND THE FUTURE OF INDUSTRIAL ENERGY
    Klackova, Ivana
    MM SCIENCE JOURNAL, 2025, 2025 : 8086 - 8090
  • [7] On Machine Learning-Based Techniques for Future Sustainable and Resilient Energy Systems
    Wang, Jiawei
    Pinson, Pierre
    Chatzivasileiadis, Spyros
    Panteli, Mathaios
    Strbac, Goran
    Terzija, Vladimir
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2023, 14 (02) : 1230 - 1243
  • [8] Identification of Machine Learning Relevant Energy and Resource Manufacturing Efficiency Levers
    Ekwaro-Osire, Henry
    Bode, Dennis
    Thoben, Klaus-Dieter
    Ohlendorf, Jan-Hendrik
    SUSTAINABILITY, 2022, 14 (23)
  • [9] Quality monitoring in multistage manufacturing systems by using machine learning techniques
    Ismail, Mohamed
    Mostafa, Noha A.
    El-assal, Ahmed
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (08) : 2471 - 2486
  • [10] Quality monitoring in multistage manufacturing systems by using machine learning techniques
    Mohamed Ismail
    Noha A. Mostafa
    Ahmed El-assal
    Journal of Intelligent Manufacturing, 2022, 33 : 2471 - 2486