Machine learning-based methods for piecewise digital predistortion in mmW 5G NR systems

被引:0
|
作者
Bulusu, S. S. Krishna Chaitanya [1 ]
Tervo, Nuutti [1 ]
Susarla, Praneeth [2 ]
Silvén, Olli [2 ]
Sillanpää, Mikko. J. [3 ]
Leinonen, Marko E. [1 ]
Juntti, Markku [1 ]
Pärssinen, Aarno [1 ]
机构
[1] Centre for Wireless Communications (CWC), University of Oulu, Pentti Kaiteran katu 1, Oulu,90570, Finland
[2] Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Pentti Kaiteran katu 1, Oulu,90570, Finland
[3] Department of Mathematical Sciences (DMS), University of Oulu, Pentti Kaiteran katu 1, Oulu,90570, Finland
关键词
53;
D O I
10.1186/s13634-024-01191-7
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] An Artificial Intelligence Based Efficient Digital Predistortion Method for 5G NR Communication Systems
    Kof, Desdina
    Arsal, Ali
    [J]. 29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [2] Machine learning-based methods for MCS prediction in 5G networks
    Tsipi, Lefteris
    Karavolos, Michail
    Papaioannou, Grigorios
    Volakaki, Maria
    Vouyioukas, Demosthenes
    [J]. TELECOMMUNICATION SYSTEMS, 2024, 86 (04) : 705 - 728
  • [3] Machine Learning-Based Paging Enhancement in 5G Network
    Choi, Wan-Kyu
    Pyun, Jae-Young
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [4] The Use of Machine Learning Techniques for Optimal Multicasting in 5G NR Systems
    Chukhno, Nadezhda
    Chukhno, Olga
    Moltchanov, Dmitri
    Gaydamaka, Anna
    Samuylov, Andrey
    Molinaro, Antonella
    Koucheryavy, Yevgeni
    Iera, Antonio
    Araniti, Giuseppe
    [J]. IEEE TRANSACTIONS ON BROADCASTING, 2023, 69 (01) : 201 - 214
  • [5] A machine learning-based design of PRACH receiver in 5G
    Modina, Naresh
    Ferrari, Riccardo
    Magarini, Maurizio
    [J]. 10TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2019) / THE 2ND INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40 2019) / AFFILIATED WORKSHOPS, 2019, 151 : 1100 - 1107
  • [6] Machine Learning-Based Channel State Estimators for 5G Wireless Communication Systems
    Ali, Mohamed Hassan Essai
    Alraddady, Fahad
    Al-Thunaibat, Mo'ath Y.
    Elnazer, Shaima
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (01): : 755 - 778
  • [7] Machine Learning-Based Beamforming Algorithm for Massive MIMO Systems in 5G Networks
    Upadhyay, Shrikant
    Juluru, Tarun Kumar
    Deshmukh, Pooja, V
    Pawar, Aarti Prasad
    Mane, Snehal Chandrakant
    Singh, Charanjeet
    Shrivastava, Anurag
    [J]. JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 971 - 979
  • [8] Machine Learning based Interference Whitening in 5G NR MIMO Receiver
    Chaudhari, Shailesh
    Kwon, HyukJoon
    [J]. 2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [9] Machine Learning-based Context Aware Sequential Initial Access in 5G mmWave Systems
    Zia-ul-Mustafa, Rida
    Hassan, Syed Ali
    [J]. 2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2019,
  • [10] Machine Learning-Based Channel Estimation for 5G New Radio
    Weththasinghe, Kithmini
    Jayawickrama, Beeshanga
    He, Ying
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (04) : 1133 - 1137