Spectral quantization of discrete random walks on half-line and orthogonal polynomials on the unit circle

被引:0
|
作者
Doliwa, Adam [1 ]
Siemaszko, Artur [1 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, ul Sloneczna 54, PL-10710 Olsztyn, Poland
关键词
Quantum walks; Discrete-time random walks; Orthogonal polynomials; Szegedy's quantization of Markov chains; CMV matrices; Szeg & odblac; map; DARBOUX TRANSFORMATIONS; CMV MATRICES;
D O I
10.1007/s11128-024-04594-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define quantization scheme for discrete-time random walks on the half-line consistent with Szegedy's quantization of finite Markov chains. Motivated by the Karlin and McGregor description of discrete-time random walks in terms of polynomials orthogonal with respect to a measure with support in the segment [-1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1,1]$$\end{document}, we represent the unitary evolution operator of the quantum walk in terms of orthogonal polynomials on the unit circle. We find the relation between transition probabilities of the random walk with the Verblunsky coefficients of the corresponding polynomials of the quantum walk. We show that the both polynomials systems and their measures are connected by the classical Szeg & odblac; map. Our scheme can be applied to arbitrary Karlin and McGregor random walks and generalizes the so-called Cantero-Gr & uuml;nbaum-Moral-Vel & aacute;zquez method. We illustrate our approach on example of random walks related to the Jacobi polynomials. Then we study quantization of random walks with constant transition probabilities where the corresponding polynomials on the unit circle have two-periodic real Verblunsky coefficients. We present geometric construction of the spectrum of such polynomials (in the general complex case) which generalizes the known construction for the Geronimus polynomials. In the Appendix, we present the explicit form, in terms of Chebyshev polynomials of the second kind, of polynomials orthogonal on the unit circle and polynomials orthogonal on the real line with coefficients of arbitrary period.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Orthogonal Laurent polynomials and quadratures on the unit circle and the real half-line
    Cruz-Barroso, R
    González-Vera, P
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 19 : 113 - 134
  • [2] Nonintersecting Brownian Motions on the Half-Line and Discrete Gaussian Orthogonal Polynomials
    Karl Liechty
    Journal of Statistical Physics, 2012, 147 : 582 - 622
  • [3] Nonintersecting Brownian Motions on the Half-Line and Discrete Gaussian Orthogonal Polynomials
    Liechty, Karl
    JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (03) : 582 - 622
  • [5] A connection between orthogonal polynomials on the unit circle and matrix orthogonal polynomials on the real line
    Cantero, MJ
    Ferrer, MP
    Moral, L
    Velázquez, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (02) : 247 - 272
  • [6] Phase transitions for edge-reinforced random walks on the half-line
    Akahori, Jiro
    Collevecchio, Andrea
    Takei, Masato
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [7] Orthogonal Polynomials on the Unit Circle
    Cobzas, S.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (03): : 171 - 172
  • [8] RANDOM ORTHOGONAL POLYNOMIALS ON THE CIRCLE
    NIKISHIN, EM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1987, (01): : 52 - 55
  • [9] Multiple orthogonal polynomials and random walks
    Branquinho, Amílcar
    Foulquié-Moreno, Ana
    Mañas, Manuel
    Álvarez-Fernández, Carlos
    Fernández-Díaz, Juan E.
    arXiv, 2021,
  • [10] Zeros of para–orthogonal polynomials and linear spectral transformations on the unit circle
    K. Castillo
    F. Marcellán
    M. N. Rebocho
    Numerical Algorithms, 2016, 71 : 699 - 714