Optimizing Bearing Fault Detection: CNN-LSTM with Attentive TabNet for Electric Motor Systems

被引:2
|
作者
Khawaja, Alaa U. [1 ]
Shaf, Ahmad [2 ]
Al Thobiani, Faisal [3 ]
Ali, Tariq [4 ]
Irfan, Muhammad [5 ]
Pirzada, Aqib Rehman [2 ]
Shahkeel, Unza [2 ]
机构
[1] King Abdulaziz Univ, Fac Maritime, Naut Sci Dept, Jeddah 22230, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Comp Sci, Sahiwal Campus, Sahiwal 57000, Pakistan
[3] King Abdulaziz Univ, Fac Maritime, Marine Engn Dept, Jeddah 22230, Saudi Arabia
[4] Univ Tabuk, Artificial Intelligence & Sensing Technol AIST Res, Tabuk 71491, Saudi Arabia
[5] Najran Univ, Coll Engn, Elect Engn Dept, Najran 61441, Saudi Arabia
来源
关键词
Electric motor; driven systems; bearing faults; automation; fine tunned; convolutional neural network; long short; term memory; fault detection; ROTATING MACHINERY; DIAGNOSIS; TRANSFORM; SELECTION;
D O I
10.32604/cmes.2024.054257
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electric motor-driven systems are core components across industries, yet they're susceptible to bearing faults. Manual fault diagnosis poses safety risks and economic instability, necessitating an automated approach. This study proposes FTCNNLSTM (Fine-Tuned TabNet Convolutional Neural Network Long Short-Term Memory), an algorithm combining Convolutional Neural Networks, Long Short-Term Memory Networks, and Attentive Interpretable Tabular Learning. The model preprocesses the CWRU (Case Western Reserve University) bearing dataset using segmentation, normalization, feature scaling, and label encoding. Its architecture comprises multiple 1D Convolutional layers, batch normalization, max-pooling, and LSTM blocks with dropout, followed by batch normalization, dense layers, and appropriate activation and loss functions. Fine-tuning techniques prevent overfitting. Evaluations were conducted on 10 fault classes from the CWRU dataset. FTCNNLSTM was benchmarked against four approaches: CNN, LSTM, CNN-LSTM with random forest, and CNN-LSTM with gradient boosting, all using 460 instances. The FTCNNLSTM model, augmented with TabNet, achieved 96% accuracy, outperforming other methods. This establishes it as a reliable and effective approach for automating bearing fault detection in electric motor-driven systems.
引用
收藏
页码:2399 / 2420
页数:22
相关论文
共 50 条
  • [1] Rolling Bearing Fault Diagnosis Based on CNN-LSTM with FFT and SVD
    Xu, Muzi
    Yu, Qianqian
    Chen, Shichao
    Lin, Jianhui
    INFORMATION, 2024, 15 (07)
  • [2] CNN-LSTM method with batch normalization for rolling bearing fault diagnosis
    Shen T.
    Li S.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (12): : 3946 - 3955
  • [3] Research on Wind Turbine Fault Detection Based on CNN-LSTM
    Qi, Lin
    Zhang, Qianqian
    Xie, Yunjie
    Zhang, Jian
    Ke, Jinran
    ENERGIES, 2024, 17 (17)
  • [4] Application of VMD Combined with CNN and LSTM in Motor Bearing Fault
    Song, Ran
    Jiang, Quan
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1661 - 1666
  • [5] Optimizing CNN-LSTM for the Localization of False Data Injection Attacks in Power Systems
    Li, Zhuo
    Xie, Yaobin
    Ma, Rongkuan
    Wei, Zihan
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [6] Fault Detection of the Harmonic Reducer Based on CNN-LSTM With a Novel Denoising Algorithm
    Zhi, Zhuo
    Liu, Liansheng
    Liu, Datong
    Hu, Cong
    IEEE SENSORS JOURNAL, 2022, 22 (03) : 2572 - 2581
  • [7] I-CNN-LSTM: An Improved CNN-LSTM for Transient Stability Analysis of More Electric Aircraft Power Systems
    Gao, Cong
    Ge, Hongjuan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, : 5683 - 5696
  • [8] A Hybrid CNN-LSTM Based Approach for Anomaly Detection Systems in SDNs
    Abdallah, Mahmoud Said
    Nhien-An-Le-Khac
    Jahromi, Hamed Z.
    Jurcut, Anca Delia
    ARES 2021: 16TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY, 2021,
  • [9] Fault Diagnosis of Rolling Bearing Based on HPSO Algorithm Optimized CNN-LSTM Neural Network
    Tian, He
    Fan, Huaicong
    Feng, Mingwen
    Cao, Ranran
    Li, Dong
    SENSORS, 2023, 23 (14)
  • [10] CNN-LSTM based Approach for DDoS Detection
    Alasmari, Tahani
    Eshmawi, Ala'
    Alshomrani, Adel
    Hsairi, Lobna
    2023 EIGHTH INTERNATIONAL CONFERENCE ON MOBILE AND SECURE SERVICES, MOBISECSERV, 2023,