The lensing effect of quantum-corrected black hole and parameter constraints from EHT observations

被引:0
|
作者
Zhao, Lai [1 ]
Tang, Meirong [1 ]
Xu, Zhaoyi [1 ]
机构
[1] College of Physics, Guizhou University, Guiyang,550025, China
来源
European Physical Journal C | 2024年 / 84卷 / 09期
关键词
Telescopes;
D O I
10.1140/epjc/s10052-024-13342-z
中图分类号
学科分类号
摘要
The quantum-corrected black hole model demonstrates significant potential in the study of gravitational lensing effects. By incorporating quantum effects, this model addresses the singularity problem in classical black holes. In this paper, we investigate the impact of the quantum correction parameter on the lensing effect based on the quantum-corrected black hole model. Using the black holes M87∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M87^*$$\end{document} and SgrA∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sgr A^*$$\end{document} as our subjects, we explore the influence of the quantum correction parameter on angular position, Einstein ring, and time delay. Additionally, we use data from the Event Horizon Telescope observations of black hole shadows to constrain the quantum correction parameter. Our results indicate that the quantum correction parameter significantly affects the lensing coefficients a¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{a}$$\end{document} and b¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{b}$$\end{document}, as well as the Einstein ring. The position θ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{\infty }$$\end{document} and brightness ratio S of the relativistic image exhibit significant changes,with deviations on the order of magnitude of ∼1μas\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 1\,\upmu \! \textrm{as}$$\end{document} and ∼0.01μas\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 0.01\,\upmu \! \textrm{as}$$\end{document}, respectively. The impact of the quantum correction parameter on the time delay ΔT21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T_{21}$$\end{document} is particularly significant in the M87∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M87^*$$\end{document} black hole, with deviations reaching up to several tens of hours. Using observational data from the Event Horizon Telescope(EHT) of black hole shadows to constrain the quantum correction parameter, the constraint range under the M87∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M87^*$$\end{document} black hole is 0≤αM2≤1.4087\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \frac{\alpha }{M^2}\le 1.4087$$\end{document} and the constraint range under the SgrA∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sgr A^*$$\end{document} black hole is 0.9713≤αM2≤1.6715\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.9713\le \frac{\alpha }{M^2}\le 1.6715$$\end{document}. Although the current resolution of the EHT limits the observation of subtle differences, future high-resolution telescopes are expected to further distinguish between the quantum-corrected black hole and the Schwarzschild black hole, providing new avenues for exploring quantum gravitational effects.
引用
收藏
相关论文
共 50 条
  • [1] Quantum-corrected scattering of a Schwarzschild black hole with GUP effect
    Heidari, N.
    Hassanabadi, H.
    Chen, H.
    PHYSICS LETTERS B, 2023, 838
  • [2] Bardeen regular black hole as a quantum-corrected Schwarzschild black hole
    Maluf, R., V
    Neves, Juliano C. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (03):
  • [3] Spectroscopy of quantum-corrected Schwarzschild black hole
    Shahjalal, Md
    NUCLEAR PHYSICS B, 2019, 940 : 1 - 9
  • [4] Strong gravitational lensing, quasi-periodic oscillations and constraints from EHT observations for quantum-improved charged black hole
    Molla, Niyaz Uddin
    Chaudhary, Himanshu
    Mustafa, G.
    Debnath, Ujjal
    Maurya, S. K.
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (04):
  • [5] Phase transition of quantum-corrected Schwarzschild black hole
    Kim, Wontae
    Kim, Yongwan
    PHYSICS LETTERS B, 2012, 718 (02) : 687 - 691
  • [6] Unsettling Physics in the Quantum-Corrected Schwarzschild Black Hole
    Faraoni, Valerio
    Giusti, Andrea
    SYMMETRY-BASEL, 2020, 12 (08):
  • [7] Energy and Thermodynamics of the Quantum-Corrected Schwarzschild Black Hole
    Mahamat Saleh
    Bouetou Bouetou Thomas
    Timoleon Crepin Kofane
    Chinese Physics Letters, 2017, 34 (08) : 28 - 31
  • [8] The instability of the inner horizon of the quantum-corrected black hole
    Cao, Li-Ming
    Li, Long-Yue
    Wu, Liang-Bi
    Zhou, Yu-Sen
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (05):
  • [9] ADM mass of the quantum-corrected Schwaraschild black hole
    Buric, M
    Radovanovic, V
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (01) : 33 - 42
  • [10] Energy and Thermodynamics of the Quantum-Corrected Schwarzschild Black Hole
    Saleh, Mahamat
    Thomas, Bouetou Bouetou
    Kofane, Timoleon Crepin
    CHINESE PHYSICS LETTERS, 2017, 34 (08)