Development of electromagnetic pollution maps utilizing Gaussian process spatial models

被引:0
|
作者
Kiouvrekis, Yiannis [1 ,2 ,4 ]
Zikas, Sotiris [1 ]
Katis, Ilias [1 ]
Tsilikas, Ioannis [3 ]
Filippopoulos, Ioannis [4 ]
机构
[1] Mathematics, Computer Science and Artificial Intelligence Laboratory (MCSAI Lab), Department of Public and One Health, University of Thessaly, Terma Mavromichali, Thessaly, Karditsa,43100, Greece
[2] Business School, University of Nicosia, 46 Makedonitissas Ave, Nicosia,2417, Cyprus
[3] National Technical University of Athens, Dept. Applied Physics and Mathematics, Iroon Polytechniou 9, Zografou, Athens,15772, Greece
[4] University of Limassol, Agias Fylaxeos, Limassol,3025, Cyprus
关键词
Interpolation;
D O I
10.1016/j.scitotenv.2024.176907
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] On identifiability and consistency of the nugget in Gaussian spatial process models
    Tang, Wenpin
    Zhang, Lu
    Banerjee, Sudipto
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2021, 83 (05) : 1044 - 1070
  • [2] Gaussian process occupancy maps
    O'Callaghan, Simon T.
    Ramos, Fabio T.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (01): : 42 - 62
  • [3] SGPP: spatial Gaussian predictive process models for neuroimaging data
    Hyun, Jung Won
    Li, Yimei
    Gilmore, John H.
    Lu, Zhaohua
    Styner, Martin
    Zhu, Hongtu
    NEUROIMAGE, 2014, 89 : 70 - 80
  • [4] Adaptive Gaussian predictive process models for large spatial datasets
    Guhaniyogi, Rajarshi
    Finley, Andrew O.
    Banerjee, Sudipto
    Gelfand, Alan E.
    ENVIRONMETRICS, 2011, 22 (08) : 997 - 1007
  • [5] Graphical Gaussian process models for highly multivariate spatial data
    Dey, Debangan
    Datta, Abhirup
    Banerjee, Sudipto
    BIOMETRIKA, 2022, 109 (04) : 993 - 1014
  • [6] Fast Gaussian Process Occupancy Maps
    Yuan, Yijun
    Kuang, Haofei
    Schwertfeger, Soren
    2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 1502 - 1507
  • [7] On nearest-neighbor Gaussian process models for massive spatial data
    Datta, Abhirup
    Banerjee, Sudipto
    Finley, Andrew O.
    Gelfand, Alan E.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (05): : 162 - 171
  • [8] Spatial Estimation of Wafer Measurement Parameters Using Gaussian Process Models
    Kupp, Nathan
    Huang, Ke
    Carulli, John
    Makris, Yiorgos
    PROCEEDINGS INTERNATIONAL TEST CONFERENCE 2012, 2012,
  • [9] Gaussian process emulators for spatial individual-level models of infectious disease
    Pokharel, Gyanendra
    Deardon, Rob
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (04): : 480 - 501
  • [10] Learning Temporal Evolution of Spatial Dependence with Generalized Spatiotemporal Gaussian Process Models
    Lan, Shiwei
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23