An FPGA-Based Approach for Compressing and Accelerating Depthwise Separable Convolution

被引:0
|
作者
Yang, Ruiheng [1 ]
Chen, Zhikun [1 ]
Hu, Lingtong [1 ]
Cui, Xihang [1 ]
Guo, Yunfei [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Automation, Sch Artificial Intelligence, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Optimization; Throughput; Resource management; Quantization (signal); Parallel processing; Hardware acceleration; CLIP-Q; DSC; FPGA; hardware accelerator; CNN;
D O I
10.1109/LSP.2024.3425286
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rapid progress of deep learning has led to an increase in the parameter count and computational requirements of convolutional neural networks (CNN), presenting difficulties in deploying networks on hardware platforms with constrained resources. Although depthwise separable convolution (DSC) is one method used to tackle this issue, it still maintains numerous redundant parameters. Meanwhile, compression learning by in parallel pruning-quantization (CLIP-Q) method represents an efficient approach to network compression. However, it does not have additional optimization for DSC. This study proposes a method named DSC-CLIP-Q, which is derived from the CLIP-Q approach and is designed to specifically address the parameter distribution characteristics of DSC. Furthermore, the research developed a highly energy-efficient and reconfigurable hardware accelerator specifically designed for this approach. Additional storage optimizations tailored to the hardware features of DSC-CLIP-Q is introduced, in conjunction with a reconfigurable processing element (PE) array specifically designed for the convolutional characteristics of DSC. The experimental results indicate that the suggested DSC accelerator attains a high level of throughput and energy efficiency, while also enhancing network accuracy.
引用
收藏
页码:2590 / 2594
页数:5
相关论文
共 50 条
  • [1] An FPGA-Based CNN Accelerator Integrating Depthwise Separable Convolution
    Liu, Bing
    Zou, Danyin
    Feng, Lei
    Feng, Shou
    Fu, Ping
    Li, Junbao
    ELECTRONICS, 2019, 8 (03)
  • [2] A High-Performance FPGA-Based Depthwise Separable Convolution Accelerator
    Huang, Jiye
    Liu, Xin
    Guo, Tongdong
    Zhao, Zhijin
    ELECTRONICS, 2023, 12 (07)
  • [3] An FPGA-Based Energy-Efficient Reconfigurable Depthwise Separable Convolution Accelerator for Image Recognition
    Xuan, Lei
    Un, Ka-Fai
    Lam, Chi-Seng
    Martins, Rui P.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (10) : 4003 - 4007
  • [4] A CNN Accelerator on FPGA Using Depthwise Separable Convolution
    Bai, Lin
    Zhao, Yiming
    Huang, Xinming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (10) : 1415 - 1419
  • [5] FPGA-Based Depth Separable Convolution Neural Network
    Lai, Yeong-Kang
    Hwang, Yu-Hao
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2020, : 741 - 742
  • [6] Exploration for Efficient Depthwise Separable Convolution Networks Deployment on FPGA
    Huang, Zhijie
    Qie, Ao
    Zhang, Chen
    Yang, Jie
    Wang, Xin'an
    2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024, 2024, : 213 - 217
  • [7] Falcon: lightweight and accurate convolution based on depthwise separable convolution
    Jang, Jun-Gi
    Quan, Chun
    Lee, Hyun Dong
    Kang, U.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (05) : 2225 - 2249
  • [8] An Efficient FPGA-based Depthwise Separable Convolutional Neural Network Accelerator with Hardware Pruning
    Liu, Zhengyan
    Liu, Qiang
    Yan, Shun
    Cheung, Ray C. C.
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2024, 17 (01)
  • [9] Falcon: lightweight and accurate convolution based on depthwise separable convolution
    Jun-Gi Jang
    Chun Quan
    Hyun Dong Lee
    U. Kang
    Knowledge and Information Systems, 2023, 65 : 2225 - 2249
  • [10] Load Prediction Based on Depthwise Separable Convolution Model
    Zhang, Kui
    Zhai, Suwei
    Lu, Hai
    2021 4TH INTERNATIONAL CONFERENCE ON MECHATRONICS, ROBOTICS AND AUTOMATION (ICMRA 2021), 2020, : 75 - 79