3D printing enhanced piezoelectricity of MXene/P(VDF-TrFE) composites for energy harvesting and force sensing

被引:0
|
作者
Li, Ceng [1 ]
Huang, Ziyue [1 ]
Zhang, Liang [1 ]
Song, Zifei [1 ,2 ]
Chen, Ying [1 ,2 ]
Chang, Xiangwu [1 ,2 ]
Hu, Penghao [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Sch Chem & Biol Engn, Beijing 100083, Peoples R China
[2] Foshan Southern China Inst New Mat, Res Ctr New Energy Composite Mat, Foshan 528200, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer-matrix composites (PMCs); Sensing; Electro-mechanical behaviour; Additive manufacturing; 3D printing;
D O I
10.1016/j.compscitech.2024.110881
中图分类号
TB33 [复合材料];
学科分类号
摘要
In pursuit of advanced self-powered wearable devices, piezoelectric materials have aroused great attention due to their stable energy harvesting ability from surroundings. However, traditional piezoelectric polymer-based nanogenerators necessitate a high-energy process to align the dipoles of the polymer, which is cumbersome, expensive, and could even lead to material deterioration. To address this challenge, we present a composite strategy with self-poling capability enabled by the extrusion-based 3D printing. MXene nanosheets were introduced into the fluoropolymer poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) to provide strong hydrogen bonding as anchors. Under the shear stress generated by the extrusion process, the alignment of the dipoles was realized without additional treatment. The resulting piezoelectric nanogenerator exhibits an open-circuit voltage of 5.5 V, a short-circuit current of 1.1 mu A, and the output power density of 68 mu Wcm(-3) under the force of 22 N and a frequency of 2 Hz. A self-powered sensor was assembled and demonstrated high sensitivity for human motions and facial expressions. Moreover, the 3D-printed piezoelectric composites present good flexibility, which is a crucial property for wearable devices. With the free design capabilities of the 3D printing technology, this strategy may pave the way for customized and feasible processing of high-performance piezoelectric nanogenerators and force sensors.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] EFFECT OF PIEZOELECTRICITY ON THE REACTIVITY OF NANOALUMINUM P(VDF-TrFE) ENERGETIC COMPOSITES
    Drewniak, David L.
    Li, Edward
    Zhou, Yao
    Boerchers, John B.
    Wang, Qing
    Yetter, Richard A.
    INTERNATIONAL JOURNAL OF ENERGETIC MATERIALS AND CHEMICAL PROPULSION, 2022, 21 (06) : 1 - 19
  • [2] Hydrothermally synthesized KNN NPs boosting P(VDF-TrFE) piezoelectricity for energy harvesting and physiological monitoring
    Deng, Jizhong
    Zhang, Guoxiang
    Yang, Ya
    Zhu, Wenjun
    Wu, Zhiyi
    Wang, Yuanyu
    MATERIALS RESEARCH BULLETIN, 2025, 185
  • [3] Enhanced energy harvesting based on surface morphology engineering of P(VDF-TrFE) film
    Cho, Yuljae
    Park, Jong Bae
    Kim, Byung-Sung
    Lee, Juwon
    Hong, Woong-Ki
    Park, Il-Kyu
    Jang, Jae Eun
    Sohn, Jung Inn
    Cha, SeungNam
    Kim, Jong Min
    NANO ENERGY, 2015, 16 : 524 - 532
  • [4] Antiferroelectric Behavior of P(VDF-TrFE) and P(VDF-TrFE-CTFE) Ferroelectric Domains for Energy Harvesting
    Shehzad, Mudassar
    Malik, Tayyaba
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (06): : 2832 - 2840
  • [5] VDF-content-guided selection of piezoelectric P(VDF-TrFE) films in sensing and energy harvesting applications
    Jiang, Hanxiao
    Yang, Jiang
    Xu, Fan
    Wang, Qinhao
    Liu, Weilin
    Chen, Qiusong
    Wang, Conghuan
    Zhang, Xiaoqing
    Zhu, Guodong
    ENERGY CONVERSION AND MANAGEMENT, 2020, 211
  • [6] Enhanced piezoelectricity of P(VDF-TrFE) by BN nanosheets doping and leading to high performance laminated magnetoelectric composites
    Song, Hongrui
    Liu, Huanbin
    Qiu, Jing
    Zhang, Shunyu
    Li, Mingyu
    Liu, Libo
    CERAMICS INTERNATIONAL, 2024, 50 (23) : 51972 - 51978
  • [7] P(VDF-TrFE) Film on PDMS Substrate for Energy Harvesting Applications
    Kim, Soaram
    Towfeeq, Itmenon
    Dong, Yongchang
    Gorman, Sean
    Rao, Apparao M.
    Koley, Goutam
    APPLIED SCIENCES-BASEL, 2018, 8 (02):
  • [8] Airflow-induced P(VDF-TrFE) fiber arrays for enhanced piezoelectric energy harvesting
    Kim, Yong-Il
    Kim, Dabin
    Jung, Jihun
    Kim, Sang-Woo
    Kim, Miso
    APL MATERIALS, 2022, 10 (03):
  • [9] Enhanced dielectric constant and hydrophobicity of P(VDF-TrFE)-based composites
    Chen, Jiayun
    Xiong, Xiaoying
    Shui, Lingling
    Zhang, Qilong
    Yang, Hui
    Zhang, Fang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (20) : 17612 - 17621
  • [10] Structural Tailing and Pyroelectric Energy Harvesting of P(VDF-TrFE) and P(VDF-TrFE-CTFE) Ferroelectric Polymer Blends
    Shehzad, Mudassar
    Wang, Yaojin
    ACS OMEGA, 2020, 5 (23): : 13712 - 13718