Parameter identification of thermoelectric modules using enhanced slime mould algorithm (ESMA)

被引:1
|
作者
Ponnalagu, Dharswini [1 ]
Ahmad, Mohd Ashraf [1 ]
Jui, Julakha Jahan [1 ]
机构
[1] Univ Malaysia Pahang Al Sultan Abdullah, Fac Elect & Elect Engn Technol, Pekan, Malaysia
关键词
Thermoelectric modules; Parameter identification; Slime mould algorithm; Metaheuristics algorithms; HEAT-RECOVERY;
D O I
10.1016/j.rineng.2024.102833
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper sets pioneering research which investigates the parametric identification of thermoelectric modules (TEMs) through the employment of enhanced slime mould algorithm (ESMA). The proposed method incorporates a pair of modifications to the standard slime mould algorithm (SMA). Primary modification encloses computation of random average position between the slimes' current individual position and best individual position towards resolution of local optima issue. Subsequent modification then involves substitution of an exponential function to the existing tangent hyperbolic function within formula p of the standard SMA in enabling improved probability variants via the selection of updated equations. Competency of the proposed algorithm in generating the optimal parameters for TEMs was appraised based on 21 benchmarked design parameters, following the objective of root mean square error (RMSE) minimization between the temperature of both actual and estimated models. Acquired results which demonstrate lower values of RMSE and parameter deviation index against the standard SMA and other preceding algorithms such as particle swarm optimization, sine cosine algorithm, moth flame optimizer and ant lion optimizer ultimately verified ESMA's efficacy as an effective approach for accurate model identification.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] ESMA-OPF: Enhanced Slime Mould Algorithm for Solving Optimal Power Flow Problem
    Farhat, Mohamed
    Kamel, Salah
    Atallah, Ahmed M.
    Hassan, Mohamed H.
    Agwa, Ahmed M.
    SUSTAINABILITY, 2022, 14 (04)
  • [2] Boosting slime mould algorithm for parameter identification of photovoltaic models
    Liu, Yun
    Heidari, Ali Asghar
    Ye, Xiaojia
    Liang, Guoxi
    Chen, Huiling
    He, Caitou
    ENERGY, 2021, 234
  • [3] Multi-parameter identification of concrete dam using polynomial chaos expansion and slime mould algorithm
    Li, YiFei
    Cao, MaoSen
    Tran-Ngoc, H.
    Khatir, Samir
    Wahab, Magd Abdel
    COMPUTERS & STRUCTURES, 2023, 281
  • [4] Parameter optimization of thermoelectric modules using a genetic algorithm
    Heghmanns, Alexander
    Beitelschmidt, Michael
    APPLIED ENERGY, 2015, 155 : 447 - 454
  • [5] Optimal parameter estimation of PEM fuel cell using slime mould algorithm
    Gupta, Jyoti
    Nijhawan, Parag
    Ganguli, Souvik
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (10) : 14732 - 14744
  • [6] A novel version of slime mould algorithm for global optimization and real world engineering problems Enhanced slime mould algorithm
    Ornek, Bulent Nafi
    Aydemir, Salih Berkan
    Duzenli, Timur
    Ozak, Bilal
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 198 : 253 - 288
  • [7] An Enhanced Slime Mould Algorithm Combines Multiple Strategies
    Xiong, Wenqing
    Li, Dahai
    Zhu, Donglin
    Li, Rui
    Lin, Zhang
    AXIOMS, 2023, 12 (10)
  • [8] Identifying and estimating solar cell parameters using an enhanced slime mould algorithm
    Devarajah L.A.P.
    Ahmad M.A.
    Jui J.J.
    Optik, 2024, 311
  • [9] Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures
    Lin, Shanying
    Jia, Heming
    Abualigah, Laith
    Altalhi, Maryam
    ENTROPY, 2021, 23 (12)
  • [10] An improved slime mould algorithm using multiple strategies
    Zhu, Mozhong
    Zhu, Rongkun
    Li, Feng
    Qiu, Jianxiang
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2024, 39 (04) : 461 - 485