Dynamic Link Prediction in Jujube Sales Market: Innovative Application of Heterogeneous Graph Neural Networks

被引:0
|
作者
Wu, Yichang [1 ]
Heng, Liang [1 ]
Tan, Fei [1 ]
Yang, Jingwen [1 ]
Guo, Li [1 ]
机构
[1] Shihezi Univ, Coll Informat Sci & Technol, Shihezi 832003, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 20期
关键词
graph neural network; link prediction; node labeling; jujubes distribution chain prediction; complex networks; multi-head attention;
D O I
10.3390/app14209333
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Link prediction is crucial in forecasting potential distribution channels within the dynamic and heterogeneous Xinjiang jujube sales market. This study utilizes knowledge graphs to represent entities and constructs a complex network model for market analysis. Graph neural networks (GNNs) have shown excellent performance in handling graph-structured data, but they do not necessarily significantly outperform in link prediction tasks due to an overreliance on node features and a neglect of structural information. Additionally, the Xinjiang jujube dataset exhibits unique complexity, including multiple types, attributes, and relationships, distinguishing it from typical GNN datasets such as DBLP and protein-protein interaction datasets. To address these challenges, we introduce the Heterogeneous Multi-Head Attention Graph Neural Network model (HMAGNN). Our methodology involves mapping isomeric nodes to common feature space and labeling nodes using an enhanced Weisfeiler-Lehman (WL) algorithm. We then leverage HMAGNN to learn both structural and attribute features individually. Throughout our experimentation, we identify the critical influence of local subgraph structure and size on link prediction outcomes. In response, we introduce virtual nodes during the subgraph extraction process and conduct validation experiments to underscore the significance of these factors. Compared to alternative models, HMAGNN excels in capturing structural features through our labeling approach and dynamically adapts to identify the most pertinent link information using a multi-head attention mechanism. Extensive experiments on benchmark datasets consistently demonstrate that HMAGNN outperforms existing models, establishing it as a state-of-the-art solution for link prediction in the context of jujube sales market analysis.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On the Effectiveness of Heterogeneous Ensembles Combining Graph Neural Networks and Heuristics for Dynamic Link Prediction
    Skarding, Joakim
    Gabrys, Bogdan
    Musial, Katarzyna
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (04): : 3250 - 3259
  • [2] A Robust Comparative Analysis of Graph Neural Networks on Dynamic Link Prediction
    Skarding, Joakim
    Hellmich, Matthew
    Gabrys, Bogdan
    Musial, Katarzyna
    IEEE ACCESS, 2022, 10 : 64146 - 64160
  • [3] Link Prediction Based on Graph Neural Networks
    Zhang, Muhan
    Chen, Yixin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [4] Line Graph Neural Networks for Link Prediction
    Cai, Lei
    Li, Jundong
    Wang, Jie
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5103 - 5113
  • [5] Link Prediction on Dynamic Heterogeneous Information Networks
    Kong, Chao
    Li, Hao
    Zhang, Liping
    Zhu, Haibei
    Liu, Tao
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, 2019, 11917 : 339 - 350
  • [6] A Framework for Dynamic Link Prediction in Heterogeneous Networks
    Aggarwal, Charu C.
    Xie, Yan
    Yu, Philip S.
    STATISTICAL ANALYSIS AND DATA MINING, 2014, 7 (01) : 14 - 33
  • [7] Survey of Dynamic Graph Neural Network for Link Prediction
    Zhang, Qi
    Chen, Xu
    Wang, Shuyang
    Jing, Yongjun
    Song, Jifei
    Computer Engineering and Applications, 60 (20): : 49 - 67
  • [8] Line graph neural networks for link weight prediction
    Liang, Jinbi
    Pu, Cunlai
    Shu, Xiangbo
    Xia, Yongxiang
    Xia, Chengyi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 661
  • [9] Evaluating Link Prediction Explanations for Graph Neural Networks
    Borile, Claudio
    Perotti, Alan
    Panisson, Andre
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II, 2023, 1902 : 382 - 401
  • [10] Tensorial graph learning for link prediction in generalized heterogeneous networks
    Chen, Zhen-Yu
    Fan, Zhi-Ping
    Sun, Minghe
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 290 (01) : 219 - 234