RSTSRN: Recursive Swin Transformer Super-Resolution Network for Mars Images

被引:0
|
作者
Wu, Fanlu [1 ,2 ]
Jiang, Xiaonan [1 ]
Fu, Tianjiao [1 ]
Fu, Yao [1 ]
Xu, Dongdong [1 ]
Zhao, Chunlei [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Chinese Acad Sci, Key Lab Lunar & Deep Space Explorat, Beijing 100101, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 20期
基金
中国国家自然科学基金;
关键词
super-resolution reconstruction; Swin Transformer; Laplacian Pyramid; BACK-PROJECTION NETWORKS; SUPER RESOLUTION; RECONSTRUCTION; ROVER; MRI;
D O I
10.3390/app14209286
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-resolution optical images will provide planetary geology researchers with finer and more microscopic image data information. In order to maximize scientific output, it is necessary to further increase the resolution of acquired images, so image super-resolution (SR) reconstruction techniques have become the best choice. Aiming at the problems of large parameter quantity and high computational complexity in current deep learning-based image SR reconstruction methods, we propose a novel Recursive Swin Transformer Super-Resolution Network (RSTSRN) for SR applied to images. The RSTSRN improves upon the LapSRN, which we use as our backbone architecture. A Residual Swin Transformer Block (RSTB) is used for more efficient residual learning, which consists of stacked Swin Transformer Blocks (STBs) with a residual connection. Moreover, the idea of parameter sharing was introduced to reduce the number of parameters, and a multi-scale training strategy was designed to accelerate convergence speed. Experimental results show that the proposed RSTSRN achieves superior performance on 2x, 4x and 8xSR tasks to state-of-the-art methods with similar parameters. Especially on high-magnification SR tasks, the RSTSRN has great performance superiority. Compared to the LapSRN network, for 2x, 4x and 8x Mars image SR tasks, the RSTSRN network has increased PSNR values by 0.35 dB, 0.88 dB and 1.22 dB, and SSIM values by 0.0048, 0.0114 and 0.0311, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging
    Hu, Jianhua
    Zheng, Shuzhao
    Wang, Bo
    Luo, Guixiang
    Huang, WoQing
    Zhang, Jun
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [2] INFORMATION-GROWTH SWIN TRANSFORMER NETWORK FOR IMAGE SUPER-RESOLUTION
    Ji, Yantao
    Jiang, Peilin
    Shi, Jingang
    Guo, Yu
    Zhang, Ruiteng
    Wang, Fei
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3993 - 3997
  • [3] SwinT-SRNet: Swin transformer with image super-resolution reconstruction network for pollen images classification
    Zu, Baokai
    Cao, Tong
    Li, Yafang
    Li, Jianqiang
    Ju, Fujiao
    Wang, Hongyuan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [4] Spstnet: image super-resolution using spatial pyramid swin transformer network
    Sun, Yemei
    Wang, Jiao
    Yang, Yue
    Zhang, Yan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [5] SwinDPSR: Dual-Path Face Super-Resolution Network Integrating Swin Transformer
    Liu, Xing
    Li, Yan
    Gu, Miao
    Zhang, Hailong
    Zhang, Xiaoguang
    Wang, Junzhu
    Lv, Xindong
    Deng, Hongxia
    SYMMETRY-BASEL, 2024, 16 (05):
  • [6] An Iris Image Super-Resolution Model Based on Swin Transformer and Generative Adversarial Network
    Lu, Hexin
    Zhu, Xiaodong
    Cui, Jingwei
    Jiang, Haifeng
    ALGORITHMS, 2024, 17 (03)
  • [7] SwiniPASSR: Swin Transformer based Parallax Attention Network for Stereo Image Super-Resolution
    Jin, Kai
    Wei, Zeqiang
    Yang, Angulia
    Guo, Sha
    Gao, Mingzhi
    Zhou, Xiuzhuang
    Guo, Guodong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 919 - 928
  • [8] Efficient Swin Transformer for Remote Sensing Image Super-Resolution
    Kang, Xudong
    Duan, Puhong
    Li, Jier
    Li, Shutao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6367 - 6379
  • [9] Asymmetric convolution Swin transformer for medical image super-resolution
    Lu, Weijia
    Jiang, Jiehui
    Tian, Hao
    Gu, Jun
    Lu, Yuhong
    Yang, Wanli
    Gong, Ming
    Han, Tianyi
    Jiang, Xiaojuan
    Zhang, Tingting
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 85 : 177 - 184
  • [10] Recursive Inception Network for Super-Resolution
    Jiang, Tao
    Wu, Xiaojun
    Yu, Zhang
    Shui, Wuyang
    Lu, Gang
    Guo, Shiqi
    Fei, Hao
    Zhang, Qieshi
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2759 - 2764