Image analysis of complex microstructures by texture analysis and correlation with properties by neural networks

被引:0
|
作者
Fuchs, A. [1 ]
Bernthaler, T. [1 ]
Stahl, B. [1 ]
Klauck, U. [1 ]
Reinsch, B. [1 ]
Schneider, G. [1 ]
机构
[1] Fachhochschule Aalen, Beethovenstr. 1, D-73430 Aalen, Germany
关键词
Correlation methods - Hardness - Image analysis - Metallographic microstructure - Neural networks - Textures;
D O I
暂无
中图分类号
学科分类号
摘要
By characterising the microstructure, quantitative image analysis allows to draw conclusions on the mechanical properties of materials. On fine microstructures with low contrast, e.g. of hardened steels, texture analysis has to be applied for quantification. Feeding texture parameters according to Haralick into a trained neural network, a correlation between the microstructure and the hardness of the steels C45 and 100Cr6 can be achieved.
引用
收藏
页码:979 / 985
相关论文
共 50 条
  • [1] Image analysis of complex microstructures by texture analysis and correlation with properties by neural networks
    Fuchs, A
    Bernthaler, T
    Stahl, B
    Klauck, U
    Reinsch, B
    Schneider, G
    ZEITSCHRIFT FUR METALLKUNDE, 2001, 92 (08): : 979 - 985
  • [2] Image Analysis of Complex Microstructures by Texture Analysis and Correlation with Properties by Neural Networks
    Fuchs, Alexander
    Bernthaler, Timo
    Stahl, Brigitte
    Klauck, Ulrich
    Reinsch, Bernd
    Schneider, Gerhard
    International Journal of Materials Research, 2001, 92 (08) : 979 - 985
  • [3] Fusion of complex networks and randomized neural networks for texture analysis
    Ribas, Lucas C.
    Sa Junior, Jarbas Joaci de Mesquita
    Scabini, Leonardo F. S.
    Bruno, Odemir M.
    PATTERN RECOGNITION, 2020, 103
  • [4] Image Texture Analysis Using Deep Neural Networks
    Gunasekara, P. G. H. H.
    Wijayakulasooriya, J. V.
    Dharmagunawardhana, H. A. C.
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2017, : 170 - 174
  • [5] Image texture analysis and neural networks for characterization of uniform soils.
    Ghalib, AM
    Hryciw, RD
    Shin, SC
    COMPUTING IN CIVIL ENGINEERING, 1998, : 671 - 682
  • [6] Local complex features learned by randomized neural networks for texture analysis
    Ribas, Lucas C.
    Scabini, Leonardo F. S.
    Sa Junior, Jarbas Joaci de Mesquita
    Bruno, Odemir M.
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)
  • [7] CLASSIFICATION OF ULTRASONIC IMAGE TEXTURE BY STATISTICAL DISCRIMINANT-ANALYSIS AND NEURAL NETWORKS
    DAPONTE, JS
    SHERMAN, P
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1991, 15 (01) : 3 - 9
  • [8] Practical applications of neural networks in texture analysis
    Biebelmann, E
    Koppen, M
    Nickolay, B
    NEUROCOMPUTING, 1996, 13 (2-4) : 261 - 279
  • [9] NEURAL NETWORKS FOR THE CLASSIFICATION OF IMAGE TEXTURE
    MUHAMAD, AK
    DERAVI, F
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1994, 7 (04) : 381 - 393
  • [10] Image based analysis of complex microstructures of engineering materials
    Wejrzanowski, Tomasz
    Spychalski, Wojciech Leon
    Rozniatowski, Krzysztof
    Kurzydlowski, Krzysztof Jan
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2008, 18 (01) : 33 - 39