Two dimensional, high resolution distribution of pH values at sediment-water interface under bioturbation of Limnodrilus hoffmeisteri

被引:0
|
作者
Yao L. [1 ,2 ]
Han C. [1 ]
Ding S. [1 ]
机构
[1] State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing
[2] University of Chinese Academy of Sciences, Beijing
来源
Ding, Shiming (smding@niglas.ac.cn) | 1600年 / Science Press卷 / 28期
关键词
Bioturbation; Limnodrilus hoffmeisteri; PH value; Planar optode; Two dimensional;
D O I
10.18307/2016.0118
中图分类号
学科分类号
摘要
The presented study measured the 2 dimensional pH value at sediment-water interface under the bioturbation of Limnodrilus hoffmeisteri using the planar optode technique. The result showed pH gradient was alleviated, which decreased from 1.6 pH/2.5 mm to 0.6 pH/1 cm. A 1 cm-depth buffer zone for the pH was formed in the vicinity of the sediment-water interface (SWI). The process of digging burrows by Limnodrilus hoffmeisteri had significant effects on the distribution of the pH around the SWI, and the pH in the burrow was 0.6 pH higher than that of the outside. © 2016 by Journal of Lake Sciences.
引用
收藏
页码:156 / 162
页数:6
相关论文
共 17 条
  • [1] Zhu Q.Z., Aller R.C., Fan Y., High-performance planar pH fluorosensor for two-dimensional pH measurements in marine sediment and water, Environmental Science and Technology, 39, 22, pp. 8906-8911, (2005)
  • [2] Hulth S., Aller R.C., Engstrom P., Et al., A pH plate fluorosensor (optode) for early diagenetic studies of marine sediments, Limnology and Oceanography, 47, 1, pp. 212-220, (2002)
  • [3] Chauvet F., Amari A., Martinez A., Stability of silicon nitride/silicon dioxide/silicon electrodes used in pH microelectronic sensors, Sensors and Actuators, 6, 4, pp. 255-267, (1984)
  • [4] Klimant I., Wolfbeis O.S., Oxygen-sensitive luminescent materials based on silicone-soluble ruthenium diimine complexes, Analytical Chemistry, 67, 18, pp. 3160-3166, (1995)
  • [5] Baumann W.H., Lehmann M., Schwinde A., Et al., Microelectronic sensor system for microphysiological application on living cells, Sensors and Actuators B: Chemical, 55, 1, pp. 77-89, (1999)
  • [6] Neethirajan S., Jayas D.S., Sadistap S., Carbon dioxide (CO<sub>2</sub>) sensors for the agri-food industry-a review, Food and Bioprocess Technology, 2, 2, pp. 115-121, (2009)
  • [7] Lantto V., Mizsei J., H<sub>2</sub>S monitoring as an air pollutant with silver-doped SnO<sub>2</sub> thin-film sensors, Sensors and Actuators B: Chemical, 5, 1, pp. 21-25, (1991)
  • [8] Pischedda L., Poggiale J.C., Cuny P., Et al., Imaging oxygen distribution in marine sediments. The importance of bioturbation and sediment heterogeneity, Acta Biotheoretica, 56, 1-2, pp. 123-135, (2008)
  • [9] Limnodrilus hoffmeisteri Clapar, 24, 3, pp. 450-459, (2012)
  • [10] Vance D.H., Czarnik A.W., Real-time assay of inorganic pyrophosphatase using a high-affinity chelation-enhanced fluorescence chemosensor, Journal of the American Chemical Society, 116, 20, pp. 9397-9398, (1994)