Novel unified manifold learning framework and an improved laplacian eigenmap

被引:0
|
作者
Hou, Chenping [1 ]
Wu, Yi [1 ]
Yi, Dongyun [1 ]
机构
[1] Department of Mathematics and Systems Science, National University of Defense Technology, Changsha 410073, China
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:676 / 682
相关论文
共 50 条
  • [1] A unified probabilistic framework for robust manifold learning and embedding
    Qi Mao
    Li Wang
    Ivor W. Tsang
    Machine Learning, 2017, 106 : 627 - 650
  • [2] A unified probabilistic framework for robust manifold learning and embedding
    Mao, Qi
    Wang, Li
    Tsang, Ivor W.
    MACHINE LEARNING, 2017, 106 (05) : 627 - 650
  • [3] Heuristically accelerated Q-learning algorithm based on Laplacian Eigenmap
    Zhu, Mei-Qiang
    Li, Ming
    Cheng, Yu-Hu
    Zhang, Qian
    Wang, Xue-Song
    Kongzhi yu Juece/Control and Decision, 2014, 29 (03): : 425 - 430
  • [4] A Unified Framework for Manifold Landmarking
    Xu, Hongteng
    Yu, Licheng
    Davenport, Mark A.
    Zha, Hongyuan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (21) : 5563 - 5576
  • [5] A unified semi-supervised dimensionality reduction framework for manifold learning
    Chatpatanasiri, Ratthachat
    Kijsirikul, Boonserm
    NEUROCOMPUTING, 2010, 73 (10-12) : 1631 - 1640
  • [6] Improved Least-Squares Quadratic Mutual Information Clustering via Laplacian Eigenmap
    Sainui, Janya
    PROCEEDINGS OF 2017 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2017,
  • [7] On-line identification of coherent generator based on WAMS and improved Laplacian Eigenmap algorithm
    Song, H. (10117346@bjtu.edu.cn), 1600, Power System Technology Press (37):
  • [8] A dual Laplacian framework with effective graph learning for unified fair spectral clustering
    Zhang, Xiang
    Wang, Qiao
    NEUROCOMPUTING, 2024, 601
  • [9] Fault feature extraction method for compressor based on improved incremental Laplacian eigenmap algorithm
    Xu, Qingcheng
    Hu, Jianzhong
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2013, 34 (04): : 791 - 796
  • [10] Gene expression data classification using Laplacian eigenmap based on Improved maximum margin criterion
    Wang, N. (wn_xlb@eihu.edu.cn), 1600, Chinese Institute of Electronics (22):