On a multipoint fractional boundary value problem with integral conditions

被引:1
|
作者
Boucenna D. [1 ]
Guezane-Lakoud A. [1 ]
Nieto J.J. [2 ]
Khaldi R. [1 ]
机构
[1] Laboratory of Advanced Materials, Department of Mathematics, Faculty of Sciences, Badji Mokhtar Annaba University, P.O. Box 12, Annaba
[2] Departamento de Análisis Matemático, Estat stica e Optimización, Facultad de Matematicas, Universidad de Santiago de Compostela
来源
Boucenna, D. (Boucenna_maths@yahoo.fr) | 1600年 / Mathematical Research Press卷 / 2017期
关键词
Boundary value problem; Fixed point theorem; Fractional differential equation; Lower; Positive solution; Upper solutions method;
D O I
10.23952/jnfa.2017.53
中图分类号
学科分类号
摘要
In this paper, we study a nonlinear higher order fractional differential equation with initial and integral conditions. By constructing the lower and upper solutions and applying the Schauder fixed point theorem, we prove the existence of positive solutions. © 2017 Journal of Nonlinear Functional Analysis.
引用
收藏
相关论文
共 50 条
  • [1] On a Nonlocal Multipoint and Integral Boundary Value Problem of Nonlinear Fractional Integrodifferential Equations
    Ibnelazyz, Lahcen
    Guida, Karim
    Melliani, Said
    Hilal, Khalid
    [J]. JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [2] A Caputo Fractional Order Boundary Value Problem with Integral Boundary Conditions
    Babakhani, Azizollah
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (04) : 753 - 763
  • [3] FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL
    Salem, Hussein A. H.
    [J]. ACTA MATHEMATICA SCIENTIA, 2011, 31 (02) : 661 - 672
  • [4] FRACTIONAL ORDER BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS INVOLVING PETTIS INTEGRAL
    Hussein A.H. Salem
    [J]. Acta Mathematica Scientia, 2011, 31 (02) : 661 - 672
  • [5] On a Multipoint Fractional Boundary Value Problem in a Fractional Sobolev Space
    Guezane-Lakoud, A.
    Khaldi, R.
    Boucenna, D.
    Nieto, Juan J.
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 30 (03) : 659 - 673
  • [6] On a Multipoint Fractional Boundary Value Problem in a Fractional Sobolev Space
    A. Guezane-Lakoud
    R. Khaldi
    D. Boucenna
    Juan J. Nieto
    [J]. Differential Equations and Dynamical Systems, 2022, 30 : 659 - 673
  • [7] On a fractional boundary value problem with fractional boundary conditions
    Goodrich, Christopher S.
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (08) : 1101 - 1105
  • [8] On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions
    Ahmad, Bashir
    Alnahdi, Manal
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    [J]. AIMS MATHEMATICS, 2023, 8 (05): : 11709 - 11726
  • [9] On a boundary value problem with integral boundary conditions
    A. Ya. Lepin
    L. A. Lepin
    [J]. Differential Equations, 2015, 51 : 1666 - 1668
  • [10] On a Boundary Value Problem with Integral Boundary Conditions
    Lepin, A. Ya.
    Lepin, L. A.
    [J]. DIFFERENTIAL EQUATIONS, 2015, 51 (12) : 1666 - 1668