Multiphase flow and reactive transport benchmark for radioactive waste disposal

被引:0
|
作者
Samper, Javier [1 ]
Mon, Alba [1 ]
Ahusborde, Etienne [2 ]
Yu, Han [3 ]
Narkuniene, Asta [4 ]
Hokr, Milan [5 ]
Montenegro, Luis [1 ]
Amaziane, Brahim [2 ]
El Ossmani, Mustapha [2 ,6 ]
Xu, Tianfu [3 ]
Yuan, Yilong [3 ]
Sembera, Jan [5 ]
Poskas, Gintautas [4 ]
机构
[1] Univ A Coruna, Interdisciplinary Ctr Chem & Biol CICA, Civil Engn Sch & Dept, Campus Elvina s-n, La Coruna 15071, Spain
[2] Univ Pau & Pays Adour, CNRS, LMAP, E2S UPPA, Pau, France
[3] Jilin Univ, Coll New Energy & Environm, Changchun 130021, Peoples R China
[4] Lithuanian Energy Inst, Nucl Engn Lab, Kaunas, Lithuania
[5] Tech Univ Liberec, Fac Mechatron Informat & Interdisciplinary Studies, Liberec, Czech Republic
[6] Univ Moulay Ismail, L2M3S ENSAM, Meknes 50500, Morocco
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Benchmark; Reactive transport modelling; FEBEX bentonite; Multiphase flow; COMPACTED BENTONITE; HIGH-PRESSURES; SIMULATION; MODEL; CO2; FRAMEWORK; MEDIA;
D O I
10.1007/s12665-024-11887-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Compacted bentonite is part of the multi-barrier system of radioactive waste repositories. The assessment of the long-term performance of the barrier requires using reactive transport models. Here we present a multiphase flow and reactive transport benchmark for radioactive waste disposal. The numerical model deals with a 1D column of unsaturated bentonite through which water, dry air and CO2(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {CO}_{2{(g)}}}$$\end{document} may flow and with the following reactions; aqueous complexation, calcite and gypsum dissolution/precipitation, cation exchange and gas dissolution. INVERSE-FADES-CORE V2, DuMuX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {DuMu}<^>X$$\end{document}, TOUGHREACT and iCP were benchmarked with 6 test cases of increasing complexity, starting with conservative tracer transport under variably unsaturated conditions and ending with water flow, gas diffusion, minerals and cation exchange. The solutions of all codes exhibit similar trends. Small discrepancies are found in conservative tracer transport due to differences in hydrodynamic dispersion. Computed CO2(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {CO}_{2{(g)}}}$$\end{document} pressures agree when a sufficiently refined grid is used. Small discrepancies in CO2(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {CO}_{2{(g)}}}$$\end{document} and pH are found near the no-flow boundary at early times which vanish later. Discrepancies are due differences in the formulations used for gas flow at nearly water-saturated conditions. Computed CO2(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {CO}_{2{(g)}}}$$\end{document} pressures show a fluctuation between 10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{-4}$$\end{document} and 10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{-3}$$\end{document} years which slows down the in-diffusion of CO2(g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {CO}_{2{(g)}}}$$\end{document}. This fluctuation is associated with chemical reactions involving CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {CO}_{2}}$$\end{document}. There are discrepancies in solute concentrations due to differences in the Debye-H & uuml;ckel (DH) formulation. They are overcome when all codes use the same DH formulation. The results of this benchmark will contribute to increase the confidence on multiphase reactive transport models for radioactive waste disposal.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Reactive transport models for deep radioactive waste disposal
    Arcos, D
    Domènech, C
    Grandia, F
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2005, 69 (10) : A416 - A416
  • [2] Reactive transport modelling of a cement backfill for radioactive waste disposal
    Wilson, James C.
    Benbow, Steven
    Metcalfe, Richard
    CEMENT AND CONCRETE RESEARCH, 2018, 111 : 81 - 93
  • [3] Dynamic update of flow and transport parameters in reactive transport simulations of radioactive waste repositories
    Aguila, Jesus F.
    Samper, Javier
    Mon, Alba
    Montenegro, Luis
    APPLIED GEOCHEMISTRY, 2020, 117
  • [4] RADIOACTIVE WASTE DISPOSAL
    不详
    SEWAGE AND INDUSTRIAL WASTES, 1953, 25 (03): : 313 - 313
  • [5] DISPOSAL OF RADIOACTIVE WASTE
    不详
    NATURE, 1960, 185 (4705) : 1 - 2
  • [6] RADIOACTIVE WASTE DISPOSAL
    FRY, RM
    AMERICAN JOURNAL OF PUBLIC HEALTH AND THE NATIONS HEALTH, 1969, 59 (03): : 448 - &
  • [7] Radioactive waste disposal
    不详
    NUCLEAR ENERGY-JOURNAL OF THE BRITISH NUCLEAR ENERGY SOCIETY, 1997, 36 (02): : 67 - 68
  • [8] Radioactive waste disposal
    Folger, M
    RADIATION PROTECTION DOSIMETRY, 1996, 68 (1-2) : 77 - 82
  • [9] The Disposal of radioactive Waste
    不详
    ATW-INTERNATIONAL JOURNAL FOR NUCLEAR POWER, 2022, 67 (05): : 98 - 99
  • [10] DISPOSAL OF RADIOACTIVE WASTE
    不详
    BMJ-BRITISH MEDICAL JOURNAL, 1959, 2 (AUG29): : 295 - 296