Squibs and discussions: Unsupervised named entity recognition using syntactic and semantic contextual evidence

被引:0
|
作者
Cucchiarelli, Alessandro [1 ]
Velardi, Paola [2 ]
机构
[1] Istituto di Informatica, Via Brecce Blanche, I-60131 Ancona, Italy
[2] Dipto. di Scienze dell'Informazione, Via Salaria 113, I-00198 Roma, Italy
关键词
Natural language processing systems - Semantics - Learning systems;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Proper nouns form an open class, making the incompleteness of manually or automatically learned classification rules an obvious problem. The purpose of this paper is twofold: first, to suggest the use of a complementary backup method to increase the robustness of any hand-crafted or machine-learning-based NE tagger; and second, to explore the effectiveness of using more fine-grained evidence - namely, syntactic and semantic contextual knowledge - in classifying NEs.
引用
收藏
页码:122 / 131
相关论文
共 50 条
  • [1] Unsupervised named entity recognition using syntactic and semantic contextual evidence
    Cucchiarelli, A
    Velardi, P
    [J]. COMPUTATIONAL LINGUISTICS, 2001, 27 (01) : 123 - 131
  • [2] Named entity recognition for Arabic using syntactic grammars
    Mesfar, Slim
    [J]. Natural Language Processing and Information Systems, Proceedings, 2007, 4592 : 305 - 316
  • [3] AGRONER: An unsupervised agriculture named entity recognition using weighted distributional semantic model
    Veena, G.
    Kanjirangat, Vani
    Gupta, Deepa
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 229
  • [4] Curatable Named-Entity Recognition Using Semantic Relations
    Hsu, Yi-Yu
    Kao, Hung-Yu
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (04) : 785 - 792
  • [5] Improving biomedical named entity recognition with syntactic information
    Yuanhe Tian
    Wang Shen
    Yan Song
    Fei Xia
    Min He
    Kenli Li
    [J]. BMC Bioinformatics, 21
  • [6] Learning the Morphological and Syntactic Grammars for Named Entity Recognition
    Sun, Mengtao
    Yang, Qiang
    Wang, Hao
    Pasquine, Mark
    Hameed, Ibrahim A.
    [J]. INFORMATION, 2022, 13 (02)
  • [7] Improving biomedical named entity recognition with syntactic information
    Tian, Yuanhe
    Shen, Wang
    Song, Yan
    Xia, Fei
    He, Min
    Li, Kenli
    [J]. BMC BIOINFORMATICS, 2020, 21 (01)
  • [8] Chinese Named Entity Recognition with New Contextual Features
    Qin, Ying
    Zhang, Taozheng
    Wang, Xiaojie
    [J]. IEEE NLP-KE 2008: PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND KNOWLEDGE ENGINEERING, 2008, : 116 - +
  • [9] CycleNER: An Unsupervised Training Approach for Named Entity Recognition
    Iovine, Andrea
    Fang, Anjie
    Fetahu, Besnik
    Rokhlenko, Oleg
    Malmasi, Shervin
    [J]. PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2916 - 2924
  • [10] Unsupervised Ranking of Knowledge Bases for Named Entity Recognition
    Mrabet, Yassine
    Kilicoglu, Halil
    Demner-Fushman, Dina
    [J]. ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 1248 - 1255