Natural fractures in reservoirs can be the cause of many adverse effects during hydraulic fracturing treatment. In the present paper, hydraulic fracturing tests are used to investigate the interaction of a propagating hydraulic fracture with a natural fracture in the fractured blocks. Systematic experiments were designed and performed on the cement blocks with different pre-existing fracture strikes and dips (30°, 60° and 90°). The effect of horizontal stress difference on the propagation of hydraulic fractures was also determined through a series of experiments with different values for Δσ, which were 5 and 10 MPa, respectively. Propagation arrest of the hydraulic fracture and crossing the pre-existing fracture were two dominating fracture behaviors at horizontal stress differences of 5 and 10 MPa, respectively. It was observed that both the magnitude of differential stress and the pre-existing fracture geometry can magnify the effect of a pre-existing fracture on hydraulic fracture propagation. When the horizontal differential stress is low (5 MPa), the hydraulic fracture crosses the pre-existing fracture at a high pre-existing fracture dip (90°) and at an intermediate to high pre-existing fracture strike (60°–90°), while hydraulic fracture is arrested by the opening of the pre-existing fracture at a pre-existing fracture strike (30°). Meanwhile, when the pre-existing fracture dip is low to intermediate (30°–60°) and its strike is low to high (30°–90°), hydraulic fracture is arrested by the opening and shear slippage of the pre-existing fracture in this situation. However, at a high horizontal differential stress (10 MPa), when the pre-existing fracture dip is low to high (30°–90°), the hydraulic fracture crosses the pre-existing fracture at the strike of the pre-existing fracture of 60°–90°, and when it is decreased to 30°, the hydraulic fracture is arrested by th eopening and shear slippage of the pre-existing fracture. Therefore, the pre-existing fracture’s strike and dip play a significant role in the propagation of hydraulic fracture at a low horizontal stress difference, while the role of the pre-existing fracture dip at a high horizontal stress difference is less than the pre-existing fracture strike on the propagation of hydraulic fracture. © 2014, Springer-Verlag Berlin Heidelberg.