共 50 条
- [1] ARAMOUNI NA K, ZEAITER J, KWAPINSKI W, AHMAD MN., Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation[J], Energy Conv Manag, 150, (2017)
- [2] LARIONOV K B, GROMOV A A., Non-isothermal oxidation of coal with Ce(NO3)3 and Cu(NO3)2 additives[J], Int J Coal Sci Technol, 6, 1, (2019)
- [3] CHEN S, ZAFFRAN J, YANG B., Dry reforming of methane over the cobalt catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation[J], Appl Catal B: Environ, 270, (2020)
- [4] ZHANG X, ZHANG L, PENG H, YOU X, PENG C., Nickel nanoparticles embedded in mesopores of AlSBA-15 with a perfect peasecod-like structure: A catalyst with superior sintering resistance and hydrothermal stability for methane dry reforming[J], Appl Catal B: Environ, 224, pp. 488-499, (2018)
- [5] QING W, Lin C, CHENG W, XIAO X., Enhancing the activity of iron based oxygen carrier via surface controlled preparation for lignite chemical looping combustion[J], Chem J Chin Univ, 36, 1, (2015)
- [6] ZENG L, HUANG F, ZHU X, ZHENG M, LI K., Chemical looping of methane over CeO2-based and Co3O4-CeO2 oxygen carriers: Controlling of product selectivity[J], Chem J Chin Univ, 38, 1, (2017)
- [7] ZENG L, LI K, HUANG F, ZHU X, LI H., Effects of Co3Oz nanocatalyst morphology on CO oxidation: Synthesis process map and catalytic activity[J], Chin J Catal, 37, 6
- [8] LOFBERG A, KANE T, GUERRERO-CABALLERO J, JALOWIECKI-DUHAME L., Chemical looping dry reforming of methane: Toward shale-gas and biogas valorization[J], Chem Eng Process, 122, pp. 523-529, (2017)
- [9] ZHU X, GAO Y, WANG X, HARIBAL V, LIU J, NEAL L M., A tailored multi-functional catalyst for ultra-efficient styrene production under a cyclic redox scheme[J], Nat Commun, 12, 1, (2021)
- [10] ZHU X, IMTIAZ Q, DONAT F, MULLER CR, LI F., Chemical looping beyond combustion - a perspective[J], Energy Environ Sci, 13, 3, pp. 772-804, (2020)