MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries

被引:0
|
作者
机构
[1] Yin, Lingxia
[2] Xu, Guiyin
[3] Nie, Ping
[4] Dou, Hui
[5] Zhang, Xiaogang
来源
Dou, Hui (dh_msc@nuaa.edu.cn) | 1600年 / Elsevier B.V., Netherlands卷 / 352期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A functional separator (MXene/ESM) to suppress the lithium polysulfides shuttling via coating MXene debris on one surface of a biodegradable eggshell membrane (ESM) is designed to enhance the electrochemical performance of Li-S batteries. The excellent electronic conductivity of the porous MXene debris, and the good mechanical strength, superior thermal stability as well as large electrolyte infiltration of ESM make MXene/ESM an ideal separator for high-performance Li-S batteries. The strong chemisorption induced from both Ti-S bond formed between Ti atom in MXene and the lithium polysulfides by the Lewis acid-base interaction and affinity of O and N containing functional groups on ESM to the lithium polysulfides greatly prevents the shuttling effect of the polysulfides. Compared with a commercial polypropylene separator, the Li-S battery with the MXene/ESM separator containing a KJC/S cathode and a Li metal anode displays greatly improved cycling stability with a capacity retention of 74% after 250 cycles at 0.5 C, while the Li-S battery with a polypropylene separator remains only 11%. The rate performance of Li-S battery with the MXene/ESM separator has also been enhanced compared to that with a polypropylene separator. Specifically, the Li-S battery with the MXene/ESM separator has a discharge capacity of 1321 mAh g−1 at 0.1 C, 1112 mAh g−1 at 0.2 C, 1003 mAh g−1 at 0.5 C and 948 mAh g−1 at 1 C. © 2018
引用
收藏
相关论文
共 50 条
  • [1] MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries
    Yin, Lingxia
    Xu, Guiyin
    Nie, Ping
    Dou, Hui
    Zhang, Xiaogang
    CHEMICAL ENGINEERING JOURNAL, 2018, 352 : 695 - 703
  • [2] High-Performance Lithium-Sulfur Batteries With an IPA/AC Modified Separator
    Guo, Yafang
    Jiang, Aihua
    Tao, Zengren
    Yang, Zhiyun
    Zeng, Yaping
    Xiao, Jianrong
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [3] A multifunctional separator for high-performance lithium-sulfur batteries
    Yang, Dezhi
    Zhi, Ruoyu
    Ruan, Daqian
    Yan, Wenqi
    Zhu, Yusong
    Chen, Yuhui
    Fu, Lijun
    Holze, Rudolf
    Zhang, Yi
    Wu, Yuping
    Wang, Xudong
    ELECTROCHIMICA ACTA, 2020, 334
  • [4] Flexible Carbon Nanotube Modified Separator for High-Performance Lithium-Sulfur Batteries
    Liu, Bin
    Wu, Xiaomeng
    Wang, Shan
    Tang, Zhen
    Yang, Quanling
    Hu, Guo-Hua
    Xiong, Chuanxi
    NANOMATERIALS, 2017, 7 (08):
  • [5] Multifunctional Separator Coatings for High-Performance Lithium-Sulfur Batteries
    Kim, Mun Sek
    Ma, Lin
    Choudhury, Snehashis
    Archer, Lynden A.
    ADVANCED MATERIALS INTERFACES, 2016, 3 (22):
  • [6] Ultrathin titanium carbide-modified separator for high-performance lithium-sulfur batteries
    Nguyen, Dang Le Tri
    Ho, Thi H.
    Nguyen, Tung Manh
    Nguyen, Thao P.
    Doan, Thi Luu Luyen
    Dang, Huyen Tran
    Tran, Minh Xuan
    CERAMICS INTERNATIONAL, 2024, 50 (24) : 54848 - 54855
  • [7] Multifunctional Vanadium Nitride-Modified Separator for High-Performance Lithium-Sulfur Batteries
    Liu, Sen
    Liu, Yang
    Zhang, Xu
    Shen, Maoqiang
    Liu, Xuesen
    Gao, Xinyue
    Hou, Linrui
    Yuan, Changzhou
    NANOMATERIALS, 2024, 14 (08)
  • [8] A novel modified PP separator by grafting PAN for high-performance lithium-sulfur batteries
    Li, Chengbin
    Yue, Hongyun
    Wang, Qiuxian
    Shi, Mengjiao
    Zhang, Huishuang
    Li, Xiangnan
    Dong, Hongyu
    Yang, Shuting
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (02) : 1566 - 1579
  • [9] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhang, Zhian
    Zhang, Zhiyong
    Li, Jie
    Lai, Yanqing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1709 - 1715
  • [10] Polydopamine-coated separator for high-performance lithium-sulfur batteries
    Zhian Zhang
    Zhiyong Zhang
    Jie Li
    Yanqing Lai
    Journal of Solid State Electrochemistry, 2015, 19 : 1709 - 1715