The implicit bias of gradient descent on separable data

被引:0
|
作者
Soudry, Daniel [1 ]
Hoffer, Elad [1 ]
Nacson, Mor Shpigel [1 ]
Gunasekar, Suriya [2 ]
Srebro, Nathan [2 ]
机构
[1] Department of Electrical Engineering, Technion Haifa, 320003, Israel
[2] Toyota Technological Institute at Chicago, Chicago,IL,60637, United States
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Gradient methods - Support vector machines - Regression analysis
引用
收藏
相关论文
共 50 条
  • [1] The Implicit Bias of Gradient Descent on Separable Data
    Soudry, Daniel
    Hoffer, Elad
    Nacson, Mor Shpigel
    Gunasekar, Suriya
    Srebro, Nathan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [2] The implicit bias of gradient descent on nonseparable data
    Ji, Ziwei
    Telgarsky, Matus
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [3] Convergence of Gradient Descent on Separable Data
    Nacson, Mor Shpigel
    Lee, Jason D.
    Gunasekar, Suriya
    Savarese, Pedro H. P.
    Srebro, Nathan
    Soudry, Daniel
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [4] On the Implicit Bias of Gradient Descent for Temporal Extrapolation
    Cohen-Karlik, Edo
    Ben David, Avichai
    Cohen, Nadav
    Globerson, Amir
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [5] The Implicit Bias of AdaGrad on Separable Data
    Qian, Qian
    Qian, Xiaoyuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [6] Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent
    Li, Zhiyuan
    Wang, Tianhao
    Lee, Jason D.
    Arora, Sanjeev
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] Implicit Bias of Gradient Descent on Linear Convolutional Networks
    Gunasekar, Suriya
    Lee, Jason D.
    Soudry, Daniel
    Srebro, Nathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [8] Tight Risk Bounds for Gradient Descent on Separable Data
    Schliserman, Matan
    Koren, Tomer
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Implicit Bias of Gradient Descent for Logistic Regression at the Edge of Stability
    Wu, Jingfeng
    Braverman, Vladimir
    Lee, Jason D.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] Gradient Descent Converges Linearly for Logistic Regression on Separable Data
    Axiotis, Kyriakos
    Sviridenko, Maxim
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202