A Bayesian approach to modeling diffraction profiles and application to ferroelectric materials

被引:0
|
作者
Iamsasri, Thanakorn [1 ,2 ]
Guerrier, Jonathon [1 ]
Esteves, Giovanni [1 ]
Fancher, Chris M. [1 ]
Wilson, Alyson G. [3 ]
Smith, Ralph C. [4 ]
Paisley, Elizabeth A. [5 ]
Johnson-Wilke, Raegan [5 ]
Ihlefeld, Jon F. [5 ]
Bassiri-Gharb, Nazanin [6 ]
Jones, Jacob L. [1 ]
机构
[1] Department of Materials Science and Engineering, North Carolina State University, Raleigh,NC,27695, United States
[2] Department of Industrial Physics and Medical Instrumentation, Faculty of Applied Science, King Mongkut's University of Technology, North-Bangkok, Bangkok,10800, Thailand
[3] Department of Statistics, North Carolina State University, Raleigh,NC,27695, United States
[4] Department of Mathematics, North Carolina State University, Raleigh,NC,27695, United States
[5] Sandia National Laboratories, Albuquerque,NM,87185, United States
[6] G. W. Woodruff School of Mechanical Engineering, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta,GA,30332-0405, United States
来源
Journal of Applied Crystallography | 2017年 / 50卷 / 01期
关键词
Lead zirconate titanate;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:211 / 220
相关论文
共 50 条
  • [1] A Bayesian approach to modeling diffraction profiles and application to ferroelectric materials
    Iamsasri, Thanakorn
    Guerrier, Jonathon
    Esteves, Giovanni
    Fancher, Chris M.
    Wilson, Alyson G.
    Smith, Ralph C.
    Paisley, Elizabeth A.
    Johnson-Wilke, Raegan
    Ihlefeld, Jon F.
    Bassiri-Gharb, Nazanin
    Jones, Jacob L.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2017, 50 : 211 - 220
  • [2] A novel approach to modeling the polarization in ferroelectric materials
    Meyer, V
    Sallese, JM
    Fazan, P
    FERROELECTRICS, 2002, 268 : 251 - 256
  • [3] Modeling the polarization in ferroelectric materials: a novel analytical approach
    Meyer, V
    Sallese, JM
    Fazan, P
    Bard, D
    Pecheux, F
    SOLID-STATE ELECTRONICS, 2003, 47 (09) : 1479 - 1486
  • [4] Application of Machine Learning Force Fields for Modeling Ferroelectric Materials
    Liu, Shi
    Huang, Jiawei
    Wu, Jing
    ACTA METALLURGICA SINICA, 2024, 60 (10) : 1312 - 1328
  • [5] Stroboscopic in situ neutron diffraction approach to elucidate the kinetics of strain mechanisms in ferroelectric materials
    Hinterstein, Manuel
    da Silva, Lucas Lemos
    Vajpayee, Gaurav
    Lee, Kai-Yang
    Studer, Andrew
    PHYSICAL REVIEW MATERIALS, 2023, 7 (03)
  • [6] Modeling pairwise convergence: A Bayesian approach with an application to Greek inflation
    Arakelian, Veni
    Moschos, Demetrios
    ECONOMICS LETTERS, 2008, 99 (02) : 340 - 344
  • [7] Modeling and analytical study for ferroelectric materials
    Mielke, Alexander
    Timofte, Aida M.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2006, 13 (06) : 457 - 462
  • [8] An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit
    Wong, Rowena Syn Yin
    Ismail, Noor Azina
    PLOS ONE, 2016, 11 (03):
  • [9] Bayesian Modeling Approach in Big Data Contexts: an Application in Spatial Epidemiology
    Orozco-Acosta, Erick
    Adin, Aritz
    Ugarte, Maria Dolores
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 749 - 750
  • [10] A neutron diffraction study of magnetically ordered ferroelectric materials
    Ivanov, SA
    Eriksson, SG
    Tellgren, R
    Rundlöf, H
    EUROPEAN POWDER DIFFRACTION EPDIC 8, 2004, 443-4 : 383 - 386