Fractional factorial designs that maximise the probability of identifying the important factors

被引:2
|
作者
Allen, Theodore T. [1 ]
Chantarat, Navara [2 ]
Taslim, Cenny [1 ]
机构
[1] The Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210, United States
[2] Prince of Songkla University, P.O. Box 38 Khohong, Songkhla 90112, Thailand
关键词
D O I
10.1504/IJISE.2009.022369
中图分类号
学科分类号
摘要
40
引用
收藏
页码:133 / 150
相关论文
共 50 条
  • [1] Optimal fractional factorial split-plot designs when the whole plot factors are important
    Wang, Congcong
    Zhao, Qianqian
    Zhao, Shengli
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 199 : 1 - 13
  • [2] An efficient method for identifying clear effects in blocked fractional factorial designs
    Ai, Mingyao
    He, Shuyuan
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (17) : 1889 - 1894
  • [3] Permuting regular fractional factorial designs for screening quantitative factors
    Tang, Yu
    Xu, Hongquan
    BIOMETRIKA, 2014, 101 (02) : 333 - 350
  • [4] MULTISTRATUM FRACTIONAL FACTORIAL DESIGNS
    Cheng, Ching-Shui
    Tsai, Pi-Wen
    STATISTICA SINICA, 2011, 21 (03) : 1001 - 1021
  • [5] The efficiencies of fractional factorial designs
    Voelkel, JG
    TECHNOMETRICS, 2005, 47 (04) : 488 - 494
  • [6] UNIFORM FRACTIONAL FACTORIAL DESIGNS
    Tang, Yu
    Xu, Hongquan
    Lin, Dennis K. J.
    ANNALS OF STATISTICS, 2012, 40 (02): : 891 - 907
  • [7] On the isomorphism of fractional factorial designs
    Ma, CX
    Fang, KT
    Lin, DKJ
    JOURNAL OF COMPLEXITY, 2001, 17 (01) : 86 - 97
  • [8] Tripling of fractional factorial designs
    Ou, Zujun
    Zhang, Minghui
    Qin, Hong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 199 : 151 - 159
  • [9] Equivalence of fractional factorial designs
    Clark, JB
    Dean, AM
    STATISTICA SINICA, 2001, 11 (02) : 537 - 547
  • [10] Supersaturated designs that maximize the probability of identifying active factors
    Allen, TT
    Bernshteyn, M
    TECHNOMETRICS, 2003, 45 (01) : 90 - 97