Learning Hamiltonian dynamics with reproducing kernel Hilbert spaces and random features

被引:0
|
作者
Smith, Torbjorn [1 ]
Egeland, Olav [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Mech & Ind Engn, Richard Birkelands Vei 2B, N-7491 Trondheim, Norway
关键词
Machine learning; System identification; Reproducing kernel Hilbert space;
D O I
10.1016/j.ejcon.2024.101128
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method for learning Hamiltonian dynamics from a limited and noisy dataset is proposed. The method learns a Hamiltonian vector field on a reproducing kernel Hilbert space (RKHS) of inherently Hamiltonian vector fields, and in particular, odd Hamiltonian vector fields. This is done with a symplectic kernel, and it is shown how the kernel can be modified to an odd symplectic kernel to impose the odd symmetry. A random feature approximation is developed for the proposed odd kernel to reduce the problem size. The performance of the method is validated in simulations for three Hamiltonian systems. It is demonstrated that the use of an odd symplectic kernel improves prediction accuracy and data efficiency, and that the learned vector fields are Hamiltonian and exhibit the imposed odd symmetry characteristics.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Learning dissipative Hamiltonian dynamics with reproducing kernel Hilbert spaces and random Fourier features
    Smith, Torbjorn
    Egeland, Olav
    IFAC PAPERSONLINE, 2024, 58 (28): : 1115 - 1120
  • [2] Linear dynamics in reproducing kernel Hilbert spaces
    Mundayadan, Aneesh
    Sarkar, Jaydeb
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 159
  • [3] Reproducing kernel hilbert spaces
    Seddighi, K.
    Iranian Journal of Science & Technology, 1993, 17 (03):
  • [4] Learning Theory with Consensus in Reproducing Kernel Hilbert Spaces
    Deng, Zhaoda
    Gregory, Jessica
    Kurdila, Andrew
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 1400 - 1405
  • [5] REPRODUCING KERNEL HILBERT SPACES AND PROBABILITY LAW OF RANDOM FUNCTIONS
    FORTET, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (22): : 1439 - 1440
  • [6] An efficient multiple kernel learning in reproducing kernel Hilbert spaces (RKHS)
    Xu, Lixiang
    Luo, Bin
    Tang, Yuanyan
    Ma, Xiaohua
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2015, 13 (02)
  • [7] Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    Fukumizu, K
    Bach, FR
    Jordan, MI
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 5 : 73 - 99
  • [8] Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces
    Yukawa, Masahiro
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (22) : 6037 - 6048
  • [9] Interpolation in reproducing kernel Hilbert spaces based on random subdivision schemes
    Cotronei, Mariantonia
    Di Salvo, Rosa
    Holschneider, Matthias
    Puccio, Luigia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 342 - 353
  • [10] Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
    Stepaniants, George
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24