Predicting the properties of bitumen using machine learning models trained with force field atom types and molecular dynamics simulations

被引:0
|
作者
Assaf, Eli I. [1 ]
Liu, Xueyan [1 ]
Lin, Peng [2 ]
Ren, Shisong [1 ]
Erkens, Sandra [1 ,2 ]
机构
[1] Delft University of Technology, Delft, Netherlands
[2] Ministry of Infrastructure and Water Management (Rijkswaterstaat), Netherlands
来源
Materials and Design | 2024年 / 246卷
关键词
Aromatic fraction - Asphaltene fractions - Bitumen design - Chemical descriptors - Dynamics simulation - Forcefields - Machine learning models - Machine-learning - Molecular analysis - Property;
D O I
10.1016/j.matdes.2024.113327
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Predicting the diffusion coefficients of rejuvenators into bitumens using molecular dynamics, machine learning, and force field atom types
    Assaf, Eli I.
    Liu, Xueyan
    Lin, Peng
    Ren, Shisong
    Erkens, Sandra
    [J]. Materials and Design, 2024, 248
  • [2] Introducing a force-matched united atom force field to explore larger spatiotemporal domains in molecular dynamics simulations of bitumen
    Assaf, Eli I.
    Liu, Xueyan
    Lin, Peng
    Erkens, Sandra
    [J]. MATERIALS & DESIGN, 2024, 240
  • [3] Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations
    Choi, Joohee
    Kang, Haisu
    Lee, Ji Hee
    Kwon, Sung Hyun
    Lee, Seung Geol
    [J]. NANOMATERIALS, 2022, 12 (14)
  • [4] Machine Learning for Accurate Force Calculations in Molecular Dynamics Simulations
    Pattnaik, Punyaslok
    Raghunathan, Shampa
    Kalluri, Tarun
    Bhimalapuram, Prabhakar
    Jawahar, C., V
    Priyakumar, U. Deva
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (34): : 6954 - 6967
  • [5] MOLECULAR DYNAMICS SIMULATIONS OF HELIX BUNDLE PROTEINS USING UNRES FORCE FIELD AND ALL-ATOM FORCE FIELD
    Gao, Kaifu
    Yang, Minghui
    [J]. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2012, 11 (06): : 1201 - 1215
  • [6] Towards predicting liquid fuel physicochemical properties using molecular dynamics guided machine learning models
    Freitas, Rodolfo S. M.
    Lima, Agatha P. F.
    Chen, Cheng
    Rochinha, Fernando A.
    Mira, Daniel
    Jiang, Xi
    [J]. FUEL, 2022, 329
  • [7] Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations
    Richings, Gareth W.
    Habershon, Scott
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (02) : 209 - 220
  • [8] Predicting the Fracture Propensity of Amorphous Silica Using Molecular Dynamics Simulations and Machine Learning
    Liu, Jiahao
    Yeo, Jingjie
    [J]. INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2023, 15 (10)
  • [9] For every retinylidene a force field: Using machine learning to improve molecular simulations of rhodopsins
    Erly, Andrew M.
    Gerber, Benjamin I.
    Li, Renee J.
    Doole, Fathima T.
    Nikolaev, Dmitrii M.
    Ryazantsev, Mikhail N.
    Struts, Andrey V.
    Brown, Michael F.
    [J]. BIOPHYSICAL JOURNAL, 2023, 122 (03) : 199A - 199A
  • [10] Assessment of machine learning models trained by molecular dynamics simulations results for inferring ethanol adsorption on an aluminium surface
    Shahbazi, Fatemeh
    Esfahani, Mohammad Nasr
    Keshmiri, Amir
    Jabbari, Masoud
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):