Independence for full conditional probabilities: Structure, factorization, non-uniqueness, and Bayesian networks

被引:0
|
作者
机构
[1] Cozman, Fabio G.
来源
Cozman, F.G. (fgcozman@usp.br) | 1600年 / Elsevier Inc.卷 / 54期
基金
巴西圣保罗研究基金会;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Independence for full conditional probabilities: Structure, factorization, non-uniqueness, and Bayesian networks
    Cozman, Fabio G.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (09) : 1261 - 1278
  • [2] Complexity, Networks, and Non-Uniqueness
    Baker, Alan
    [J]. FOUNDATIONS OF SCIENCE, 2013, 18 (04) : 687 - 705
  • [3] Complexity, Networks, and Non-Uniqueness
    Alan Baker
    [J]. Foundations of Science, 2013, 18 : 687 - 705
  • [4] Context-specific independence, decomposition of conditional probabilities, and inference in Bayesian networks
    Zhang, NL
    [J]. PRICAI'98: TOPICS IN ARTIFICIAL INTELLIGENCE, 1998, 1531 : 411 - 423
  • [5] Conditional Independence in Testing Bayesian Networks
    Shen, Yujia
    Huang, Haiying
    Choi, Arthur
    Darwiche, Adnan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [6] Construction algorithm of MPD-JT for Bayesian networks based on full conditional independence
    Zhu, Ming-Min
    Liu, Wei
    Yang, You-Long
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2010, 32 (06): : 1325 - 1328
  • [7] Intrinsic non-uniqueness of the acoustic full waveform inverse problem
    Lyu, Chao
    Capdeville, Yann
    Al-Attar, David
    Zhao, Liang
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 226 (02) : 795 - 802
  • [8] Bayesian networks with a logistic regression model for the conditional probabilities
    Rijmen, Frank
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 48 (02) : 659 - 666
  • [9] Bayesian network that learns conditional probabilities by neural networks
    Motomura, Y
    Hara, I
    Asoh, H
    Matsui, T
    [J]. PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 584 - 587
  • [10] CONDITIONAL INDEPENDENCE IN MAX-LINEAR BAYESIAN NETWORKS
    Amendola, Carlos
    Klueppelberg, Claudia
    Lauritzen, Steffen
    Tran, Ngoc M.
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 1 - 45