A spin on active learning analysis for health monitoring

被引:0
|
作者
Clarkson, D. [1 ]
Bull, L.A. [2 ]
Dardeno, T.A. [1 ]
Wickramarachchi, C.T. [1 ]
Cross, E.J. [1 ]
Rogers, T.J. [1 ]
Worden, K. [1 ]
Dervilis, N. [1 ]
Hughes, A.J. [1 ]
机构
[1] University of Sheffield, Department of Engineering, Mappin St, S1 3JD, United Kingdom
[2] University of Cambridge, Department of Engineering, 7a JJ Thomson Ave, Cambridge, United Kingdom
来源
e-Journal of Nondestructive Testing | 2024年 / 29卷 / 07期
基金
英国工程与自然科学研究理事会;
关键词
Artificial intelligence - Decision making - Risk assessment - Structural health monitoring;
D O I
10.58286/29629
中图分类号
学科分类号
摘要
This article combines the effects of the population-based approach to structural health monitoring(SHM) with the efficiencies of active learning with an aim to improve decision-making, reduce costs and more effectively allocate resources for SHM. This model applies a decision theoretic analysis to mandate inspections of a population of machining tools according to risk. © 2024, NDT. net GmbH and Co. KG. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [1] Active Learning Approaches to Structural Health Monitoring
    Bull, L.
    Manson, G.
    Worden, K.
    Dervilis, N.
    [J]. SPECIAL TOPICS IN STRUCTURAL DYNAMICS, VOL 5, 2019, : 157 - 159
  • [2] On risk-based active learning for structural health monitoring
    Hughes, A. J.
    Bull, L. A.
    Gardner, P.
    Barthorpe, R. J.
    Dervilis, N.
    Worden, K.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 167
  • [3] Active learning for semi-supervised structural health monitoring
    Bull, L.
    Worden, K.
    Manson, G.
    Dervilis, N.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2018, 437 : 373 - 388
  • [4] INSIGHT INTO ACTIVE HEALTH MONITORING METHODS USING MACHINE LEARNING
    Reynolds, Whitney
    Doyle, Derek
    Arritt, Brandon
    [J]. PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS (SMASIS 2011), VOL 2, 2011, : 535 - 543
  • [5] Probabilistic active learning: An online framework for structural health monitoring
    Bull, L. A.
    Rogers, T. J.
    Wickramarachchi, C.
    Cross, E. J.
    Worden, K.
    Dervilis, N.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 134
  • [6] Wind Turbine Health Monitoring: Current and Future Trends with an Active Learning Twist
    Dervilis, N.
    Maguire, A. E.
    Papatheou, E.
    Worden, K.
    [J]. ROTATING MACHINERY, HYBRID TEST METHODS, VIBRO-ACOUSTICS & LASER VIBROMETRY, VOL 8, 2017, : 119 - 129
  • [7] Health monitoring with learning methods
    Ypma, A
    Melissant, C
    Baunbæk-Jensen, O
    Duin, RPW
    [J]. ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 547 - 553
  • [8] Movie analysis as an active learning method: A study with health management student
    Yesildag, Ahmet Y.
    Bostan, Sedat
    [J]. INTERNATIONAL JOURNAL OF MANAGEMENT EDUCATION, 2023, 21 (01):
  • [9] Deep Learning based Crack Growth Analysis for Structural Health Monitoring
    Chambon, A.
    Bellaouchou, A.
    Atamuradov, V
    Vitillo, F.
    Plana, R.
    [J]. IFAC PAPERSONLINE, 2022, 55 (10): : 3268 - 3273
  • [10] Deep learning enhanced principal component analysis for structural health monitoring
    Fernandez-Navamuel, Ana
    Magalhaes, Filipe
    Zamora-Sanchez, Diego
    Omella, Angel J.
    Garcia-Sanchez, David
    Pardo, David
    [J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2022, 21 (04): : 1710 - 1722