New developmental stages for common marmosets (Callithrix jacchus) using mass and age variables obtained by K-means algorithm and self-organizing maps (SOM)

被引:0
|
作者
Laboratório de Endocrinologia Comportamental, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil [1 ]
不详 [2 ]
机构
来源
Comput. Biol. Med. | 1600年 / 10卷 / 853-859期
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Data mining - Conformal mapping
引用
收藏
相关论文
共 12 条
  • [1] New developmental stages for common marmosets (Callithrix jacchus) using mass and age variables obtained by K-means algorithm and self-organizing maps (SOM)
    Leao, Adriano de Castro
    Doria Neto, Adriao Duarte
    Cordeiro de Sousa, Maria Bernardete
    COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39 (10) : 853 - 859
  • [2] A methodology for sensory evaluation of food products using Self-Organizing Maps and K-means algorithm
    Luz Alves, Wonder Alexandre
    de Araujo, Sidnei Alves
    Pessota, Jorge Henrique
    dos Santos, Renato Augusto Barbosa O.
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY, PTS 1-4, 2013, 263-266 : 2191 - +
  • [3] Comparing an Ant-Based Clustering Algorithm with Self-Organizing Maps and K-means
    Boscarioli, Clodis
    Villwock, Rosangela
    Soares, Bruno Eduardo
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2012, 12 (09): : 49 - 54
  • [4] Analysis of gene expression data by using self-organizing maps and K-means clustering
    Sugiyama, A
    Kotani, M
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1342 - 1345
  • [5] Clustering gene expression data using self-organizing maps and k-means clustering
    Yano, N
    Kotani, A
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 3211 - 3215
  • [6] Automatic Unsupervised Segmentation of Retinal Vessels Using Self-Organizing Maps and K-Means Clustering
    Lupascu, Carmen Alina
    Tegolo, Domenico
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, 2011, 6685 : 263 - 274
  • [7] Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation
    Kuo, RJ
    An, YL
    Wang, HS
    Chung, WJ
    EXPERT SYSTEMS WITH APPLICATIONS, 2006, 30 (02) : 313 - 324
  • [8] Industrial polymers classification using laser-induced breakdown spectroscopy combined with self-organizing maps and K-means algorithm
    Tang, Yun
    Guo, Yangmin
    Sun, Qianqian
    Tang, Shisong
    Li, Jiaming
    Guo, Lianbo
    Duan, Jun
    OPTIK, 2018, 165 : 179 - 185
  • [9] Understanding dynamic of biogeochemical properties in the northern Adriatic Sea by using self-organizing maps and k-means clustering
    Solidoro, Cosimo
    Bandelj, Vinko
    Barbieri, Pierluigi
    Cossarini, Gianpiero
    Umani, Serena Fonda
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2007, 112 (C7)
  • [10] Extracting Cell Patterns From High-Dimensional Radio Network Performance Datasets Using Self-Organizing Maps and K-Means Clustering
    Wang, Shaoxuan
    Ferrus, Ramon
    IEEE ACCESS, 2021, 9 : 42045 - 42058