Analysis of the Propagation Properties of 900-bend Periodic Segmented Waveguides Using the 2D Finite Element Method

被引:1
|
作者
Rubio-Mercedes C.E. [1 ]
Rodríguez-Esquerre V.F. [2 ]
Lima I.T. [3 ]
Hernández-Figueroa H.E. [4 ]
机构
[1] State University of Mato Grosso do Sul, Mathematics and Engineering Physics Programs, Dourados, MS
[2] Federal University of Bahia, Department of Electrical Engineering, Salvador, BA
[3] North Dakota State Universit, Department of Electrical and Computer Engineering, Fargo, 58108–6050, ND
[4] University of Campinas, Department of Communications, School of Electrical and Computer Engineering, Campinas, SP
关键词
Bend waveguide; Finite element; Mode profile; Periodic segmented waveguide;
D O I
10.1590/2179-10742018v17i1861
中图分类号
学科分类号
摘要
We use the two dimensional finite element method (2D-FEM) in the frequency domain to characterize the transmission properties of 900-bend periodic segmented waveguides (PSWs). We investigated the dependence of the transmission coefficient and the mode profile of PSWs on the bending radius, the waveguide duty cycle, and the operating wavelength. We show that 900-bend PSWs can be designed in photonic integrated circuits with a curvature radius as small as three times the wavelength to achieve transmission coefficient greater than 0.8. © 2018 SBMO/SBMag
引用
收藏
页码:32 / 43
页数:11
相关论文
共 50 条
  • [1] Analysis of Straight Periodic Segmented Waveguide Using the 2-D Finite Element Method
    Rubio-Mercedes, C. E.
    Rodriguez-Esquerre, V. F.
    Lima, Ivan T., Jr.
    Hernandez-Figueroa, H. E.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (11) : 2163 - 2169
  • [2] Simulation of Segmented Waveguide Crossing Using the 2D Finite Element Method
    Rubio-Mercedes, C. E.
    Hernandez-Figueroa, H. E.
    Lima, Ivan T., Jr.
    Rodriguez-Esquerre, V. F.
    2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 819 - +
  • [3] On the convergence of 2D and 3D finite element/boundary element analysis for periodic acoustic waveguides
    Daniau, William
    Lenczner, Michel
    Laroche, Thierry
    Garcia, Julien
    Carry, Emile
    Ballandras, Sylvain
    2009 JOINT MEETING OF THE EUROPEAN FREQUENCY AND TIME FORUM AND THE IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM, VOLS 1 AND 2, 2009, : 430 - 434
  • [4] Finite element modal analysis of wave propagation in homogeneous and periodic waveguides
    Sorokin, S., V
    Broberg, P. H.
    Steffensen, M. T.
    Ledet, L. S.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 227
  • [5] ANALYSIS OF FINITE PERIODIC WAVEGUIDES FOR ELASTIC WAVES USING FINITE-ELEMENT METHOD.
    Hasegawa, Koji
    Koshiba, Masanori
    Suzuki, Michio
    Electronics and Communications in Japan, Part II: Electronics (English translation of Denshi Tsushin Gakkai Ronbunshi), 1987, 70 (06): : 27 - 36
  • [6] An analysis of periodic leaky surface acoustic waveguides using the hybrid finite element method
    Hasegawa, K
    Koshiba, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1998, 37 (5B): : 2901 - 2904
  • [7] A NEW AUTOMATED STRETCHING FINITE ELEMENT METHOD FOR 2D CRACK PROPAGATION
    Bentahar, Mohammed
    Benzaama, Habib
    Bentoumi, Mohamed
    Mokhtari, Mohamed
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2017, 55 (03) : 869 - 881
  • [8] A recursive finite element method (RFEM) for analysis of finite periodic structures in rectangular waveguides
    Chen, HH
    Chung, SJ
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - 1996 DIGEST, VOLS 1-3, 1996, : 150 - 153
  • [9] The improvement of crack propagation modelling in triangular 2D structures using the extended finite element method
    Chen, Jun-Wei
    Zhou, Xiao-Ping
    Berto, Filippo
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (02) : 397 - 414
  • [10] Analysis of skewed slots in induction machines by using 2D finite element method
    Roger-Folch, J
    Joares, VJL
    Lazaro, EG
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1998, 17 (1-3) : 212 - 218