A Worst Case Analysis of Calibrated Label Ranking Multi-label Classification Method

被引:0
|
作者
Mello, Lucas H.S. [1 ]
Varejão, Flávio M. [1 ]
Rodrigues, Alexandre L. [2 ]
机构
[1] Department of Informatics, Federal University of Espírito Santo, Vitória, Brazil
[2] Department of Statistics, Federal University of Espírito Santo, Vitória, Brazil
关键词
Classification methods - Label rankings - Losses minimizations - Mathematical proof - Multi-label classifications - Multi-label learning - Multi-labels - Multilabel - Pairwise preference - Performance;
D O I
暂无
中图分类号
学科分类号
摘要
Most multi-label classification methods are evaluated on real datasets, which is a good practice for comparing the performance among methods on the average scenario. Due to the large amount of factors to consider, this empirical approach does not explain, nor does show the factors impacting the performance. A reasonable way to understand some of the performance’s factors of multi-label methods independently of the context is to find a mathematical proof about them. In this paper, mathematical proofs are given for the multilabel method ranking by pairwise comparison and its extension for classification named by calibrated label ranking, showing their performance on a worst case scenario for five multilabel metrics. The pairwise approach adopted by ranking by pairwise comparison enables the algorithm to achieve the optimal performance on Spearman rank correlation. However, the findings presented in this paper clearly show that the same pairwise approach adopted by the algorithm is also a crucial factor contributing to a very poor performance on other multi-label metrics. ©2022 Lucas Henrique Sousa Mello, Flávio Miguel Varejão, Alexandre Loureiros Rodrigues.
引用
下载
收藏
相关论文
共 50 条
  • [1] A Worst Case Analysis of Calibrated Label Ranking Multi-label Classification Method
    Mello, Lucas H. S.
    Varejao, Flavio M.
    Rodrigues, Alexandre L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [2] Partial Calibrated Multi-label Ranking
    Moral-Garcia, Serafin
    Destercke, Sebastien
    BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 287 - 294
  • [3] Calibrated Multi-label Classification with Label Correlations
    Zhi-Fen He
    Ming Yang
    Hui-Dong Liu
    Lei Wang
    Neural Processing Letters, 2019, 50 : 1361 - 1380
  • [4] Calibrated Multi-label Classification with Label Correlations
    He, Zhi-Fen
    Yang, Ming
    Liu, Hui-Dong
    Wang, Lei
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1361 - 1380
  • [5] Using Credal C4.5 for Calibrated Label Ranking in Multi-Label Classification
    Moral-Garcia, Serafin
    Mantas, Carlos J.
    Castellano, Javier G.
    Abellan, Joaquin
    PROCEEDINGS OF THE TWELVETH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2021, 147 : 220 - 228
  • [6] Using Credal C4.5 for Calibrated Label Ranking in Multi-Label Classification
    Moral-Garcia, Serafin
    Mantas, Carlos J.
    Castellano, Javier G.
    Abellan, Joaquin
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 147 : 60 - 77
  • [7] Ranking based multi-label classification for sentiment analysis
    Chen, Dengbo
    Rong, Wenge
    Zhang, Jianfei
    Xiong, Zhang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (02) : 2177 - 2188
  • [8] MLCE: A Multi-Label Crotch Ensemble Method for Multi-Label Classification
    Yao, Yuan
    Li, Yan
    Ye, Yunming
    Li, Xutao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [9] A label compression method for online multi-label classification
    Ahmadi, Zahra
    Kramer, Stefan
    PATTERN RECOGNITION LETTERS, 2018, 111 : 64 - 71
  • [10] A model for multi-label classification and ranking of learning objects
    Lopez, Vivian F.
    de la Prieta, Fernando
    Ogihara, Mitsunori
    Wong, Ding Ding
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 8878 - 8884