Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely

被引:0
|
作者
Bahaghighat, Mahdi [1 ]
Abedini, Fereshteh [2 ,3 ]
Xin, Qin [4 ]
Zanjireh, Morteza Mohammadi [1 ]
Mirjalili, Seyedali [5 ,6 ]
机构
[1] Computer Engineering Department, Imam Khomeini International University, Qazvin, Iran
[2] Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
[3] Department of Science and Technology, Linköping University, Norrköping, Sweden
[4] Faculty of Science and Technology, University of the Faroe Islands, Faroe Islands
[5] Torrens University Australia, Brisbane, Australia
[6] Yonsei Frontier Lab, Yonsei University, Seoul, Korea, Republic of
来源
Energy Reports | 2021年 / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:8561 / 8576
相关论文
共 50 条
  • [1] Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely
    Bahaghighat, Mahdi
    Abedini, Fereshteh
    Xin, Qin
    Zanjireh, Morteza Mohammadi
    Mirjalili, Seyedali
    ENERGY REPORTS, 2021, 7 : 8561 - 8576
  • [2] Anomaly Detection in Smart Grids using Machine Learning
    Shabad, Prem Kumar Reddy
    Alrashide, Abdulmueen
    Mohammed, Osama
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [3] Wake modeling of wind turbines using machine learning
    Ti, Zilong
    Deng, Xiao Wei
    Yang, Hongxing
    APPLIED ENERGY, 2020, 257
  • [4] Smart Implementation of Computer Vision and Machine Learning for Pothole Detection
    Shah, Ashulosh
    Sharma, Gaurav
    Bhargava, Lava
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 65 - 69
  • [5] Smart attendance using deep learning and computer vision
    Seelam, Vivek
    Penugonda, Akhil Kumar
    Kalyan, B. Pavan
    Priya, M. Bindu
    Prakash, M. Durga
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 4091 - 4094
  • [6] Fault prognosis of wind turbines using multimodal machine learning
    Khan, Prince Waqas
    Byun, Yung Cheol
    Energy Reports, 2024, 12 : 4938 - 4952
  • [7] Performance validation of wind turbines using machine learning methodologies
    Sambana B.
    Appala Naidu P.
    Jarabala R.
    Narayana V.N.S.L.
    Materials Today: Proceedings, 2023, 80 : 2845 - 2849
  • [8] Emerging Computer Vision Based Machine Learning Issues for Smart Cities
    Khan, Muhammad Murtaza
    Ilyas, Muhammad U.
    Saleem, Sajid
    Alowibdi, Jalal S.
    Alkatheiri, Mohammed Saeed
    RESEARCH & INNOVATION FORUM 2019: TECHNOLOGY, INNOVATION, EDUCATION, AND THEIR SOCIAL IMPACT, 2019, : 315 - 322
  • [9] An angular velocity sensor using machine learning and optical orbital angular momentum
    Strong, Elizabeth F.
    Anderson, Alexander Q.
    Heffernan, Brendan M.
    Brenner, Michael P.
    Gopinath, Juliet T.
    Rieker, Gregory B.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [10] Autonomous Bot Using Machine Learning and Computer Vision
    Karkera T.
    Singh C.
    SN Computer Science, 2021, 2 (4)