CNNPSP: Pseudouridine sites prediction based on deep learning

被引:0
|
作者
Fan, Yongxian [1 ]
Li, Yongzhen [2 ]
Yang, Huihua [1 ,4 ]
Pan, Xiaoyong [3 ]
机构
[1] School of Computer and Information Security, Guilin University of Electronic Technology, Guilin,541004, China
[2] School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin,541004, China
[3] Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai,200240, China
[4] School of Automation, Beijing University of Posts and Telecommunications, Beijing,100876, China
基金
中国国家自然科学基金;
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Accurate prediction - Biological functions - Gene transcriptions - Jackknife tests - Prediction-based - Pseudouridine - Rna modifications - Specific sites
引用
收藏
页码:291 / 301
相关论文
共 50 条
  • [1] CNNPSP: Pseudouridine Sites Prediction Based on Deep Learning
    Fan, Yongxian
    Li, Yongzhen
    Yang, Huihua
    Pan, Xiaoyong
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2019, PT I, 2019, 11871 : 291 - 301
  • [2] MU-PseUDeep: A deep learning method for prediction of pseudouridine sites
    Khan, Saad M.
    He, Fei
    Wang, Duolin
    Chen, Yongbing
    Xu, Dong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 1877 - 1883
  • [3] Identification of RNA pseudouridine sites using deep learning approaches
    Bin Aziz, Abu Zahid
    Hasan, Md. Al Mehedi
    Shin, Jungpil
    PLOS ONE, 2021, 16 (02):
  • [4] A deep learning based approach for prediction of Chlamydomonas reinhardtii phosphorylation sites
    Niraj Thapa
    Meenal Chaudhari
    Anthony A. Iannetta
    Clarence White
    Kaushik Roy
    Robert H. Newman
    Leslie M. Hicks
    Dukka B. KC
    Scientific Reports, 11
  • [5] A deep learning based approach for prediction of Chlamydomonas reinhardtii phosphorylation sites
    Thapa, Niraj
    Chaudhari, Meenal
    Iannetta, Anthony A.
    White, Clarence
    Roy, Kaushik
    Newman, Robert H.
    Hicks, Leslie M.
    Kc, Dukka B.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] DeepRMethylSite: a deep learning based approach for prediction of arginine methylation sites in proteins
    Chaudhari, Meenal
    Thapa, Niraj
    Roy, Kaushik
    Newman, Robert H.
    Saigo, Hiroto
    Dukka, B. K. C.
    MOLECULAR OMICS, 2020, 16 (05) : 448 - 454
  • [7] A Review About Transcription Factor Binding Sites Prediction Based on Deep Learning
    Zeng, Yuanqi
    Gong, Meiqin
    Lin, Meng
    Gao, Dongrui
    Zhang, Yongqing
    IEEE ACCESS, 2020, 8 : 219256 - 219274
  • [8] Porpoise: a new approach for accurate prediction of RNA pseudouridine sites
    Li, Fuyi
    Guo, Xudong
    Jin, Peipei
    Chen, Jinxiang
    Xiang, Dongxu
    Song, Jiangning
    Coin, Lachlan J. M.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [9] DeepPhos: prediction of protein phosphorylation sites with deep learning
    Luo, Fenglin
    Wang, Minghui
    Liu, Yu
    Zhao, Xing-Ming
    Li, Ao
    BIOINFORMATICS, 2019, 35 (16) : 2766 - 2773
  • [10] Deep Learning Approaches for the Prediction of Protein Functional Sites
    Pitarch, Borja
    Pazos, Florencio
    MOLECULES, 2025, 30 (02):