Artificial Intelligence inspired method for cross-lingual cyberhate detection from low resource languages

被引:0
|
作者
Kaur, Manpreet [1 ]
Saini, Munish [1 ]
机构
[1] Guru Nanak Dev Univ, Dept Comp Engn & Technol, Amritsar, Punjab, India
关键词
Artificial Intelligence; cross-lingual; cyberhate; low resource languages; social media; HIGHER-EDUCATION; HATE SPEECH; COMMUNITY;
D O I
10.1145/3677176
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The appearance of inflammatory language on social media by college or university students is quite prevalent, inspiring platforms to engage in community safety mechanisms. Escalating hate speech entails creating sophisticated artificial intelligence-based, machine learning, and deep learning algorithms to detect offensive internet content. With a few noteworthy exceptions, the majority of the studies on automatic hate speech recognition have emphasized high-resource languages, mainly English. We bridge this gap by addressing hate speech detection in Punjabi (Gurmukhi), a low-resource Indo-Aryan language articulated in Indian educational institutions. This research identifies cross-lingual hate speech in the code-switched English-Punjabi language used on social media. It proposes an approach combining the best hate speech detection techniques to cover existing state-of-the-art system gaps and limitations. In this method, the Roman Punjabi is transliterated, and then Bidirectional Encoder Representations from Transformer (BERT) based models are employed for hate detection. The proposed model has achieved 0.86 precision and 0.83 recall, and various higher educational institutions could employ it to discover the issues/domains where hate prevails the most.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Cross-Lingual Morphological Tagging for Low-Resource Languages
    Buys, Jan
    Botha, Jan A.
    PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2016, : 1954 - 1964
  • [2] Cross-Lingual Retrieval Augmented Prompt for Low-Resource Languages
    Nie, Ercong
    Liang, Sheng
    Schmid, Helmut
    Schuetze, Hinrich
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 8320 - 8340
  • [3] Intent detection and slot filling for Persian: Cross-lingual training for low-resource languages
    Zadkamali, Reza
    Momtazi, Saeedeh
    Zeinali, Hossein
    NATURAL LANGUAGE PROCESSING, 2025, 31 (02): : 559 - 574
  • [4] Unsupervised Ranked Cross-Lingual Lexical Substitution for Low-Resource Languages
    Ecker, Stefan
    Horbach, Andrea
    Thater, Stefan
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 1709 - 1717
  • [5] Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages
    Gupta, Shivanshu
    Matsubara, Yoshitomo
    Chadha, Ankit
    Moschitti, Alessandro
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 14078 - 14092
  • [6] UniBridge: A Unified Approach to Cross-Lingual Transfer Learning for Low-Resource Languages
    Trinh Pham
    Le, Khoi M.
    Luu Anh Tuan
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS, 2024, : 3168 - 3184
  • [7] Deep Persian sentiment analysis: Cross-lingual training for low-resource languages
    Ghasemi, Rouzbeh
    Ashrafi Asli, Seyed Arad
    Momtazi, Saeedeh
    JOURNAL OF INFORMATION SCIENCE, 2022, 48 (04) : 449 - 462
  • [8] Automatic Wordnet Development for Low-Resource Languages using Cross-Lingual WSD
    Taghizadeh, Nasrin
    Faili, Hesham
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2016, 56 : 61 - 87
  • [9] Translation Errors Significantly Impact Low-Resource Languages in Cross-Lingual Learning
    Agrawal, Ashish Sunil
    Fazili, Barah
    Jyothi, Preethi
    PROCEEDINGS OF THE 18TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2: SHORT PAPERS, 2024, : 319 - 329
  • [10] Adversarial Cross-Lingual Transfer Learning for Slot Tagging of Low-Resource Languages
    He, Keqing
    Yan, Yuanmeng
    Xu, Weiran
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,